Multiblock and Multigroup PLS: Application to Study Cannabis Consumption in Thirteen European Countries

  • Aida EslamiEmail author
  • El Mostafa Qannari
  • Stéphane Legleye
  • Stéphanie Bougeard
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 173)


We address the problem of investigating the relationships between (K + 1) blocks of variables (i.e., K blocks of independent variables and one block of dependent variables), where the observations are a priori divided into several known groups. We propose a simple procedure called multiblock and multigroup PLS regression—which is a straightforward extension of multiblock PLS regression—that takes into account the group structure of the observations. This method of analysis is illustrated with a large, questionnaire based, survey exploring, in 2011, the cannabis consumption of teenagers of thirteen European countries (the European School Survey Project on Alcohol and other Drugs).


Multigroup and multiblock PLS regression Multiblock analysis Multigroup analysis 


  1. Amenta, P.: Generalized constrained co-inertia analysis. Adv. Data Anal. Class. 2, 81–105 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  2. Chin, W.W., Marcolin, B.L., Newsted, P.R.: A partial least squares latent variable modeling approach for measuring interaction effects: results from a Monte Carlo simulation study and an electronic-mail emotion/adoption study. Inf. Syst. Res. 14, 189–217 (2003)CrossRefGoogle Scholar
  3. Eslami, A., Qannari, E.M., Kohler, A., Bougeard, S.: General overview of methods of analysis of multi-group datasets. Revue des Nouvelles Technologies de l’Information 25, 108–123 (2013a)zbMATHGoogle Scholar
  4. Eslami, A., Qannari, E.M., Kohler, A., Bougeard, S.: Two-block multi-group data analysis: application to epidemiology. In: Abdi, H., Chin, W.W., Esposito Vinzi, V., Russolillo, G., Trinchera, L. (eds.) New Perspectives in Partial Least Squares and Related Methods, pp. 243–255. Springer, New York (2013b)CrossRefGoogle Scholar
  5. Eslami, A., Qannari, E.M., Kohler, A., Bougeard, S.: Algorithms for multi-group PLS. J. Chemom. 28, 192–201 (2014a)CrossRefGoogle Scholar
  6. Eslami, A., Qannari, E.M., Kohler, A., Bougeard, S.: Multivariate analysis of multiblock and multigroup data. J. Chemom. Intel. Lab. Syst. 133, 63–69 (2014b)CrossRefGoogle Scholar
  7. Flury, B.N.: Common principal components in K groups. J. Am. Stat. Assoc. 79, 892–898 (1984)MathSciNetGoogle Scholar
  8. Hox, J.: Multilevel Analysis: Techniques and Applications, 2nd edn. Taylor & Francis, New York (2010)Google Scholar
  9. Jorgensen, K., Mevik, B.H., Naes, T.: Combining designed experiments with several blocks of spectroscopic data. Chemom. Intel. Lab. Syst. 88, 143–212 (2007)CrossRefGoogle Scholar
  10. Kiers, H.A.L., Ten Berge, J.M.F.: Hierarchical relations between methods for simultaneous component analysis and a technique for rotation to a simple simultaneous structure. Br. J. Math. Stat. Psychol. 47, 109–126 (1994)CrossRefzbMATHGoogle Scholar
  11. Krzanowski, W.J.: Principal component analysis in the presence of group structure. Appl. Stat. 33, 164–168 (1984)CrossRefGoogle Scholar
  12. Legleye, S., Karila, L., Beckand, F., Reynaud, M.: Validation of the cast, a general population cannabis abuse screening test. J. Subst. Use 12, 233–242 (2007)CrossRefGoogle Scholar
  13. Legleye, S., Piontek, D., Kraus, L.: Psychometric properties of the cannabis abuse screening test (cast) in a french sample of adolescents. Drug Alcohol Depend 113, 229–235 (2011)CrossRefGoogle Scholar
  14. Liang, K.Y., Zeger, S.L.: Longitudinal data analysis using generalized linear models. Biometrika 73, 13–22 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  15. Lindgren, F., Geladi, P., Wold, S.: The kernel algorithm for PLS. J. Chemom. 7, 45–59 (1993)CrossRefGoogle Scholar
  16. Mage, I., Mevik, B.H., Naes, T.: Regression models with process variables and parallel blocks of raw material measurements. J. Chemom. 22, 443–456 (2008)CrossRefGoogle Scholar
  17. Martin, E., Morris, J., Lane, S.: Monitoring process manufacturing performance. IEEE Control Syst. 22, 26–39 (2002)CrossRefGoogle Scholar
  18. R Development Core Team: A Language and Environment of Statistical Computing. R Foundation for Statistical Computing, Vienna (2012).
  19. Takane, Y., Hwang, H.: Generalized constrained canonical correlation analysis. Multivar. Behav. Res. 37, 163–195 (2002)CrossRefGoogle Scholar
  20. Takane, Y., Jung, S.: Generalized constrained redundancy analysis. Behaviormetrika 33, 179–192 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  21. Takane, Y., Yanai, H., Hwang, H.: An improved method for generalized constrained canonical correlation analysis. Comput. Stat. Data Anal. 50, 221–241 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  22. Wangen, L.E., Kowalski, B.R.: A multiblock partial least squares algorithm for investigating complex chemical systems. J. Chemom. 3, 3–20 (1988)CrossRefGoogle Scholar
  23. Wold, H.: Estimation of principal components and related models by iterative least squares. In: Krishnaiah, P.R. (ed.) Multivariate Analysis, pp. 391–420. Academic Press, New York (1966)Google Scholar
  24. Wold, S.: Three PLS algorithms according to SW. In: Symposium MULDAST (Multi-Variate Analysis in Science and Technology), Umea University, Umea, pp. 26–30 (1984)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Aida Eslami
    • 1
    Email author
  • El Mostafa Qannari
    • 1
  • Stéphane Legleye
    • 2
    • 3
    • 4
  • Stéphanie Bougeard
    • 5
  1. 1.LUNAM University, ONIRIS, USC Sensometrics and Chemometrics LaboratoryNantesFrance
  2. 2.National institute of demographic studies (Ined)ParisFrance
  3. 3.InsermParisFrance
  4. 4.University Paris-Sud and University Paris DescartesParisFrance
  5. 5.French Agency for Food, Environmental and Occupational Health Safety (ANSES)Unit of Epidemiology, Technopole Saint Brieuc ArmorPloufraganFrance

Personalised recommendations