Advertisement

Assessment and Validation in Quantile Composite-Based Path Modeling

  • Cristina DavinoEmail author
  • Vincenzo Esposito Vinzi
  • Pasquale Dolce
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 173)

Abstract

The paper aims to introduce assessment and validation measures in Quantile Composite-based Path modeling. A quantile approach in the Partial Least Squares path modeling framework overcomes the classical exploration of average effects and highlights how and if the relationships among observed and unobserved variables change according to the explored quantile of interest. A final evaluation of the quality of the obtained results both from a descriptive (assessment) and inferential (validation) point of view is needed. The functioning of the proposed method is shown through a real data application in the area of the American Customer Satisfaction Index.

Keywords

Quantile composite-based path modeling PLS-PM Quantile regression 

References

  1. Amato, S., Esposito Vinzi, V., Tenenhaus, M.: A global goodness-of-fit index for PLS structural equation modeling. Oral Communication to PLS Club, HEC School of Management, France (2004)Google Scholar
  2. American Customer Satisfaction Index: LLC. Food processing sector (2000)Google Scholar
  3. Anderson, E.W., Fornell, C.: Foundations of the American customer satisfaction index. J. Total Qual. Manag. 11 (7), 869–882 (2000)CrossRefGoogle Scholar
  4. Chin, W.W.: The partial least squares approach to structural equation modeling. In: Marcoulides, G.A. (ed.) Modern Methods for Business Research, pp. 295–358. Lawrence Erlbaum Associates, Mahwah (1998)Google Scholar
  5. Davino, C.: Combining PLS path modeling and quantile regression for the evaluation of customer satisfaction. Ital. J. Appl. Stat. 26, 93–116 (2014) (published in 2016)Google Scholar
  6. Davino, C., Esposito Vinzi, V.: Quantile PLS path modeling. In: Book of Abstract of the 8th International Conference on Partial Least Squares and Related Methods, Paris (2014)Google Scholar
  7. Davino, C., Esposito Vinzi, V.: Quantile Composite-based Path Modelling, Advances in Data Analysis and Classification. Theory, Methods, and Applications in Data Science (2016) DOI 10.1007/s11634-015-0231-9Google Scholar
  8. Davino, C., Furno, M., Vistocco, D.: Quantile Regression: Theory and Applications. Wiley, Chichester (2013)zbMATHGoogle Scholar
  9. Efron, B., Tibshirani, R.J.: An Introduction to the Bootstrap. Chapman Hall, New York (1993)zbMATHCrossRefGoogle Scholar
  10. Esposito Vinzi, V., Russolillo, G.: Partial least squares algorithms and methods. WIREs Comput. Stat. 5, 1–19 (2012)CrossRefGoogle Scholar
  11. Esposito Vinzi, V., Trinchera, L., Squillacciotti, S., Tenenhaus, M.: REBUS-PLS: a response-based procedure for detecting unit segments in PLS path modelling. Appl. Stoch. Models Bus. Ind. 24 (5), 439–458 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  12. Esposito Vinzi, V., Chin, W.W., Henseler, J., Wang, H.: Handbook of Partial Least Squares: Concepts, Methods and Applications. Springer, Berlin/New York (2010)zbMATHCrossRefGoogle Scholar
  13. Fornell, C., Larcker, D.F.: Structural equation models with unobservable variables and measurement error: algebra and statistics. J. Mark. Res. 18 (3), 328–388 (1981)CrossRefGoogle Scholar
  14. Götz, O., Liehr-Gobbers, K., Krafft, M.: Evaluation of structural equation models using the partial least squares (PLS) approach. In: Esposito Vinzi, V., Chin, W.W., Henseler, J., Wang, H. (eds.) Handbook of Partial Least Squares: Concepts, Methods, and Applications. Springer, Berlin (2009)Google Scholar
  15. Gould, W.: sg70: interquantile and simultaneous-quantile regression. Stata Tech. Bull. 38, 14–22 (1997)Google Scholar
  16. Henseler, J., Sarstedt, M.: Goodness-of-fit indices for partial least squares path modeling. Comput. Stat. 28, 565–580 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  17. Henseler, J., Ringle, C.M., Sinkovics, R.R.: The use of partial least squares path modeling in international marketing. Adv. Int. Mark. 20, 277–319 (2009)Google Scholar
  18. Kocherginsky, M., He, H., Mu, Y.: Practical confidence intervals for regression quantiles. J. Comput. Graph. Stat. 14 (1), 41–55 (2005)MathSciNetCrossRefGoogle Scholar
  19. Koenker, R.: Quantile Regression. Cambridge University Press, Cambridge/New York (2005)zbMATHCrossRefGoogle Scholar
  20. Koenker, R., Basset, G.W.: Regression quantiles. Econometrica 46, 33–50 (1978)MathSciNetzbMATHCrossRefGoogle Scholar
  21. Koenker, R., Basset, G.W.: Robust tests for heteroscedasticity based on regression quantiles. Econometrica 50, 43–61 (1982a)MathSciNetzbMATHCrossRefGoogle Scholar
  22. Koenker, R., Basset, G.W.: Tests for linear hypotheses and L1 estimation. Econometrica 46, 33–50 (1982b)CrossRefGoogle Scholar
  23. Koenker, R., Machado, J.: Goodness of fit and related inference processes for quantile regression. J. Am. Stat. Assoc. 94, 1296–1310 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  24. Li, G., Li, Y., Tsai, C.L.: Quantile correlations and quantile autoregressive modeling. J. Am. Stat. Assoc. 110 (509), 233–245 (2015)MathSciNetCrossRefGoogle Scholar
  25. Lohmöller, J.B.: Latent Variable Path Modeling with Partial Least Squares. Physica-Verlag, Heidelberg (1989)zbMATHCrossRefGoogle Scholar
  26. Parzen, M.I., Wei, L., Ying, Z: A resampling method based on pivotal estimating functions. Biometrika 18, 341–350 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  27. Stone, M.: Cross-validatory choice and assessment of statistical predictions. J. R. Stat. Soc. 36, 111–147 (1974)MathSciNetzbMATHGoogle Scholar
  28. Tenenhaus, M.: La Régression PLS: Théorie et Pratique. Technip, Paris (1998)zbMATHGoogle Scholar
  29. Tenenhaus, M., Amato, S., Esposito Vinzi, V.: A global goodness-of-fit index for PLS structural equation modelling. In: Proceedings of the XLII SIS scientific meeting, pp. 739–742 (2004)Google Scholar
  30. Tenenhaus, M., Esposito Vinzi, V., Chatelin, Y.-M., Lauro, C.: PLS path modeling. Comput. Stat. Data Anal. 48 (1), 159–205 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  31. Wold, H.: Partial least squares. In: Kotz, S., Johnson, N.L. (eds.) Encyclopedia of Statistical Sciences. John Wiley, New York (1985)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Cristina Davino
    • 1
    Email author
  • Vincenzo Esposito Vinzi
    • 2
  • Pasquale Dolce
    • 3
  1. 1.University of MacerataMacerataItaly
  2. 2.ESSEC Business SchoolCergy Pontoise CedexFrance
  3. 3.University of Naples “Federico II”NaplesItaly

Personalised recommendations