Advertisement

Partial Possibilistic Regression Path Modeling

  • Rosaria RomanoEmail author
  • Francesco Palumbo
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 173)

Abstract

This paper introduces structural equation modeling for imprecise data, which enables evaluations with different types of uncertainty. Coming under the framework of variance-based analysis, the proposed method called Partial Possibilistic Regression Path Modeling (PPRPM) combines the principles of PLS path modeling to model the network of relations among the latent concepts, and the principles of possibilistic regression to model the vagueness of the human perception. Possibilistic regression defines the relation between variables through possibilistic linear functions and considers the error due to the vagueness of human perception as reflected in the model via interval-valued parameters. PPRPM transforms the modeling process into minimizing components of uncertainty, namely randomness and vagueness. A case study on the motivational and emotional aspects of teaching is used to illustrate the method.

Keywords

Structural equation modeling (SEM) Possibilistic regression (PR) Partial possibilistic regression path modeling (PPRPM) 

References

  1. Billard, L., Diday, E.: Regression analysis for interval-valued data. In: Kiers, H.A.L., Rasson, J.P., Groenen, P.J.F., Schader, M. (eds.) Data Analysis, Classification and Related Methods, Proceedings of 7th Conference IFCS, Namur, pp. 369–374 (2000)Google Scholar
  2. Blanco-Fernndez, A., Corral, N., González-Rodríguez, G.: Estimation of a flexible simple linear model for interval data based on set arithmetic. Comput. Stat. Data Anal. 55, 2568–2578 (2011)MathSciNetCrossRefGoogle Scholar
  3. Bollen, K.A.: Structural Equations with Latent Variables. Wiley, New York (1989)CrossRefzbMATHGoogle Scholar
  4. Chin, W.W.: The partial least squares approach for structural equation modeling. In: Macoulides, G.A. (ed.) Modern Methods for Business Research, pp. 295–336. Lawrence Erlbaum Associates, Mahwah (1998)Google Scholar
  5. Coppi, R.: Management of uncertainty in statistical reasoning: the case of regression analysis. Int. J. Approx. Reason. 47, 284–305 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  6. Coppi, R., D’Urso, P., Giordani, P., Santoro, A.: Least squares estimation of a linear regression model with LR fuzzy. Comput. Stat. Data Anal. 51, 267–286 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  7. Davino, C., Furno, M., Vistocco, D.: Quantile Regression: Theory and Applications. Wiley, Chichester (2013)zbMATHGoogle Scholar
  8. Diamond, P.: Fuzzy least squares. Inf. Sci. 46, 141–157 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  9. Diamond, P.: Least squares fitting of compact set-valued data. J. Math. Anal. Appl. 147, 531–544 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  10. Jöreskog, K.G.: A general method for analysis of covariance structures. Biometrika 57, 239–251 (1970)MathSciNetCrossRefzbMATHGoogle Scholar
  11. Judd, C.M., McClelland, G.H.: Data Analysis: A Model Comparison Approach. Routledge, New York (2009)Google Scholar
  12. Kim, K.J., Moskowitz, H., Koksalan, D.: Fuzzy versus statistical linear regression. Eur. J. Oper. Res. 92, 417–434 (1996)CrossRefzbMATHGoogle Scholar
  13. Koenker, R., Basset, G.W.: Regression quantiles. Econometrica 46, 33–50 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  14. Lima Neto, E.A., de Carvalho, F.A.T.: Constrained linear regression models for symbolic interval-valued variables. Comput. Stat. Data Anal. 54, 333–347 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  15. Marino, M., Palumbo, F.: Interval arithmetic for the evaluation of imprecise data effects in least squares linear regression. Ital. J. Appl. Stat. 14, 277–291 (2002)Google Scholar
  16. Moè, A., Pazzaglia, F., Friso, G.: MESI, Motivazioni, Emozioni, Strategie e Insegnamento. Questionari metacognitivi per insegnanti. Erickson, Trento (2010)Google Scholar
  17. Palumbo, F., Romano, R.: Possibilistic PLS path modeling: a new approach to the multigroup comparison. In: Brito, P. (ed.) Compstat 2008, pp. 303–314. Physica-Verlag, Heidelberg (2008)CrossRefGoogle Scholar
  18. Palumbo, F., Romano, R., Esposito Vinzi, V.: Fuzzy PLS path modeling: a new tool for handling sensory data. In: Preisach, C., Burkhardt, H., Schmidt-Thieme, L., Decker, R. (eds.) Data Analysis, Machine Learning and Applications, pp. 689–696. Springer, Berlin/Heidelberg (2008)CrossRefGoogle Scholar
  19. Palumbo, F., Strollo, M.R., Melchiorre, F.: Stress and burnout in the school teachers: a study on the motivations to teach in the Neapolitan district. (in Italian). In: Strollo, M.R. (ed.) La motivazione nel contesto scolastico. pp. 3–47. Franco Angeli, Milan (2014)Google Scholar
  20. Romano, R., Palumbo, F.: Partial possibilistic regression path modeling for subjective measurement. QdS – J Methodol. Appl. Stat. 15, 177–190 (2013)Google Scholar
  21. Tanaka, H.: Fuzzy data analysis by possibilistic linear models. Fuzzy Sets Syst. 24, 363–375 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  22. Tanaka, H., Guo, P.: Possibilistic Data Analysis for Operations Research. Physica-Verlag, Wurzburg (1999)zbMATHGoogle Scholar
  23. Tanaka, H., Uejima, S., Asai, K.: Linear regression analysis with fuzzy model. IEEE Trans. Syst. Man Cyber. 12, 903–907 (1982)CrossRefzbMATHGoogle Scholar
  24. Tenenhaus, M., Esposito Vinzi, V., Chatelin, Y.-M., Lauro, C.: PLS path modeling. Comput. Stat. Data Anal. 48, 159–205 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  25. Wang, H.F., Tsaur, R.C.: Insight of a fuzzy regression model. Fuzzy Sets Syst. 112, 355–369 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  26. Wold, H.: Modelling in complex situations with soft information. In: Third World Congress of Econometric Society, Toronto (1975)Google Scholar
  27. Zadeh, L.A.: Outline of a new approach to the analysis of complex systems and decision processes. IEEE Trans. Syst. Man Cybern. 1, 28–44 (1973)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.University of CalabriaCosenzaItaly
  2. 2.University of Naples Federico IINaplesItaly

Personalised recommendations