Partial Least Squares for Heterogeneous Data

  • Peter BühlmannEmail author
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 173)


Large-scale data, where the sample size and the dimension are high, often exhibits heterogeneity. This can arise for example in the form of unknown subgroups or clusters, batch effects or contaminated samples. Ignoring these issues would often lead to poor prediction and estimation. We advocate the maximin effects framework (Meinshausen and Bühlmann, Maximin effects in inhomogeneous large-scale data. Preprint arXiv:1406.0596, 2014) to address the problem of heterogeneous data. In combination with partial least squares (PLS) regression, we obtain a new PLS procedure which is robust and tailored for large-scale heterogeneous data. A small empirical study complements our exposition of new PLS methodology.


Partial least square regression (PLSR) Heterogeneous data Big data Minimax Maximin 


  1. Breiman, L.: “Bagging predictors. Mach. Learn. 24, 123–140 (1996)MathSciNetzbMATHGoogle Scholar
  2. Bühlmann, P., Meinshausen, N.: Magging: maximin aggregation for inhomogeneous large-scale data. Proc. of the IEEE 104, 126–135 (2016)CrossRefGoogle Scholar
  3. Bühlmann, P., van de Geer, S.: Statistics for High-Dimensional Data: Methods, Theory and Applications. Springer, New York (2011)CrossRefzbMATHGoogle Scholar
  4. Bühlmann, P., Yu, B.: Analyzing bagging. Ann. Stat. 30, 927–961 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  5. Esposito Vinzi, V., Chin, W.W., Henseler, J., Wang, H.: Handbook of Partial Least Squares: Concepts, Methods and Applications. Springer, New York (2010)CrossRefzbMATHGoogle Scholar
  6. Frank, L.E., Friedman, J.H.: A statistical view of some chemometrics regression tools. Technometrics 35 (2), 109–135 (1993)CrossRefzbMATHGoogle Scholar
  7. Geladi, P., Kowalski, B.R.: Partial least-squares regression: a tutorial. Analytica Chimica Acta 185, 1–17 (1986)CrossRefGoogle Scholar
  8. Hall, P., Samworth, R.J.: Properties of bagged nearest neighbour classifiers. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 67, 363–379 (2005)Google Scholar
  9. Hastie, T., Tibshirani, R.: Varying-coefficient models. J. R. Stat. Soc. Ser. B (Statist. Methodol.) 55, 757–796 (1993)Google Scholar
  10. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning, Data Mining, Inference and Prediction, 2nd edn. Springer, New York (2009)Google Scholar
  11. Hoerl, A.E., Kennard, R.W.: Ridge regression: biased estimation for nonorthogonal problems. Technometrics 12, 55–67 (1970)CrossRefzbMATHGoogle Scholar
  12. Huber, P.J.: Robust Statistics, 2nd edn. Springer, New York (2011)Google Scholar
  13. McLachlan, G., Peel, D.: Finite Mixture Models. Wiley, New York (2004)zbMATHGoogle Scholar
  14. Meinshausen, N., Bühlmann, P.: Maximin effects in inhomogeneous large-scale data. Ann. Statist. 43, 1801–1830 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  15. Pinheiro, J., Bates, D.: Mixed-Effects Models in S and S-PLUS. Springer, New York (2000)CrossRefzbMATHGoogle Scholar
  16. R Core Team: R: a language and environment for statistical computing. R foundation for statistical computing, Vienna. (2014)
  17. Tibshirani, R.: Regression shrinkage and selection via the Lasso. J. R. Stat. Soc. Ser. B (Statist. Methodol.) 58, 267–288 (1996)Google Scholar
  18. Wold, H.: Estimation of principal components and related models by iterative least squares. In: Krishnaiaah, P. (ed.) Multivariate Analysis, pp. 391–420. Academic, New York (1966)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Seminar for Statistics, ETH ZurichZürichSwitzerland

Personalised recommendations