Evidential Missing Link Prediction in Uncertain Social Networks

  • Sabrine MallekEmail author
  • Imen Boukhris
  • Zied Elouedi
  • Eric Lefevre
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 610)


Link prediction is the problem of determining future or missing associations between social entities. Most of the methods have focused on social networks under a certain framework neglecting some of the inherent properties of data from real applications. These latter are usually noisy, missing or partially observed. Therefore, uncertainty is an important feature to be taken into account. In this paper, proposals for handling the problem of missing link prediction while being attentive to uncertainty are presented along with a technique for uncertain social networks generation. Uncertainty is not only handled in the graph model but also in the method itself using the assets of the belief function theory as a general framework for reasoning under uncertainty. The approach combines sampling techniques and information fusion and returns good results in real-life settings.


Social network analysis Missing link prediction Uncertain social network Belief function theory Information fusion Graph sampling 


  1. 1.
    Adamic, L.A., Adar, E.: Friends and neighbors on the web. Soc. Netw. 25(3), 211–230 (2003)CrossRefGoogle Scholar
  2. 2.
    Adar, E., Ré, C.: Managing uncertainty in social networks. Data Eng. Bull. 30(2), 23–31 (2007)Google Scholar
  3. 3.
    Ahmed, N.M., Chen, L.: An efficient algorithm for link prediction in temporal uncertain social networks. Inf. Sci. 331, 120–136 (2016)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Clauset, A., Moore, C., Newman, M.E.J.: Hierarchical structure and the prediction of missing links in networks. Nature 453, 98–101 (2008)CrossRefGoogle Scholar
  5. 5.
    Dahlin, J., Svenson, P.: A method for community detection in uncertain networks. In: Proceedings of the 2011 European Intelligence and Security Informatics conference, pp. 155–162 (2011)Google Scholar
  6. 6.
    Dempster, A.P.: Upper and lower probabilities induced by a multivalued mapping. Ann. Math. Stat. 38, 325–339 (1967)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Gile, K.J., Handcock, M.S.: Respondent-driven sampling: an assessment of current methodology. Sociol. Method. 40(1), 285–327 (2010)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Gong, N.Z., Talwalkar, A., Mackey, L., Huang, L., Shin, E.C.R., Stefanov, E., Shi, E.R., Song, D.: Joint link prediction and attribute inference using a social-attribute network. ACM Trans. Intell. Syst. Technol. 5(2), 27:1–27:20 (2014)CrossRefGoogle Scholar
  9. 9.
    Gong, N.Z., Talwalkar, A., Mackey, L.W., Huang, L., Shin, E.C.R., Stefanov, E., Shi, E., Song, D.: Predicting links and inferring attributes using a social-attribute network (SAN). CoRR abs/1112.3265 (2011)Google Scholar
  10. 10.
    Handcock, M.S., Gile, K.: Modeling social networks with sampled data. Ann. Appl. Stat 4(1), 5–25 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Heckathorn, D.D.: Comment: Snowball versus respondent-driven sampling. Sociol. Method. 41(1), 355–366 (2011)CrossRefGoogle Scholar
  12. 12.
    Jeh, G., Widom, J.: Simrank: a measure of structural-context similarity. In: Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2002, pp. 538–543. ACM (2002)Google Scholar
  13. 13.
    Koskinen, J.H., Robins, G., Wang, P., Pattison, P.: Bayesian analysis for partially observed network data, missing ties, attributes and actors. Soc. Netw. 35(4), 514–527 (2013)CrossRefGoogle Scholar
  14. 14.
    Kossinets, G.: Effects of missing data in social networks. Soc. Netw. 28, 247–268 (2003)CrossRefGoogle Scholar
  15. 15.
    Liben-Nowell, D., Kleinberg, J.: The link prediction problem for social networks. J. Am. Soc. Inf. Sci. Technol. 58(7), 1019–1031 (2007)CrossRefGoogle Scholar
  16. 16.
    Lu, L., Zhou, T.: Link prediction in complex networks: a survey. Phys. A 390(6), 1150–1170 (2011)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Mallek, S., Boukhris, I., Elouedi, Z., Lefevre, E.: Evidential link prediction based on group information. In: Prasath, R., Vuppala, A.K., Kathirvalavakumar, T. (eds.) MIKE 2015. LNCS, vol. 9468, pp. 482–492. Springer International Publishing, New York (2015)CrossRefGoogle Scholar
  18. 18.
    Mallek, S., Boukhris, I., Elouedi, Z., Lefevre, E.: The link prediction problem under a belief function framework. In: Proceedings of the IEEE 27th International Conference on the Tools with Artificial Intelligence (ICTAI), pp. 1013–1020 (2015)Google Scholar
  19. 19.
    McAuley, J.J., Leskovec, J.: Learning to discover social circles in ego networks. In: Proceedings of the 26th Annual Conference on Neural Information Processing Systems 2012, pp. 548–556 (2012)Google Scholar
  20. 20.
    Newman, M.E.J.: Clustering and preferential attachment in growing networks. Phys. Rev. E 64, 025102 (2001)CrossRefGoogle Scholar
  21. 21.
    Shafer, G.R.: A Mathematical Theory of Evidence. Princeton University Press, Princeton (1976)zbMATHGoogle Scholar
  22. 22.
    Smets, P.: Application of the transferable belief model to diagnostic problems. Int. J. Int. Syst. 13(2–3), 127–157 (1998)CrossRefzbMATHGoogle Scholar
  23. 23.
    Smets, P.: Practical uses of belief functions. In: Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligence, UAI 1999, pp. 612–621 (1999)Google Scholar
  24. 24.
    Smets, P., Kennes, R.: The transferable belief model. Artif. Intell. 66(2), 191–234 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Svenson, P.: Social network analysis of uncertain networks. In: Proceedings of the 2nd Skövde workshop on information fusion topics (2008)Google Scholar
  26. 26.
    Zhou, T., Lü, L., Zhang, Y.: Predicting missing links via local information. Eu. Phys. J. B-Condens. Matter Complex Syst. 71(4), 623–630 (2009)CrossRefzbMATHGoogle Scholar
  27. 27.
    Zhu, Y.X., Lü, L., Zhang, Q.M., Zhou, T.: Uncovering missing links with cold ends. Phys. A Stat. Mech. Appl. 391(22), 5769–5778 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Sabrine Mallek
    • 1
    • 2
    Email author
  • Imen Boukhris
    • 1
  • Zied Elouedi
    • 1
  • Eric Lefevre
    • 2
  1. 1.LARODEC, Institut Supérieur de Gestion de TunisUniversité de TunisTunisTunisia
  2. 2.Univ. Lille Nord de France, UArtois EA 3926 LGI2ALilleFrance

Personalised recommendations