Skip to main content

Recognition of Confusing Objects for NAO Robot

  • Conference paper
  • First Online:
  • 1120 Accesses

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 610))

Abstract

Visual processing is one of the most essential tasks in robotics systems. However, it may be affected by many unfavourable factors in the operating environment which lead to imprecisions and uncertainties. Under those circumstances, we propose a multi-camera fusing method applied in a scenario of object recognition for a NAO robot. The cameras capture the same scenes at the same time, then extract feature points from the scene and give their belief about the classes of the detected objects. Dempster’s rule of combination is then used to fuse information from the cameras and provide a better decision. In order to take advantages of heterogeneous sensors fusion, we combine information from 2D and 3D cameras. The results of experiment prove the efficiency of the proposed approach.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Berg, A.C., Berg, T.L., Malik, J.: Shape matching and object recognition using low distortion correspondences. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005, vol. 1, pp. 26–33. IEEE (2005)

    Google Scholar 

  2. Ling, H., Jacobs, D.W.: Shape classification using the inner-distance. IEEE Trans. Pattern Anal. Mach. Intell. 29(2), 286–299 (2007)

    Article  Google Scholar 

  3. Perner, P.: Cognitive aspects of object recognition-recognition of objects by texture. Procedia Comput. Sci. 60, 391–402 (2015)

    Article  Google Scholar 

  4. Arivazhagan, S., Shebiah, R.N., Nidhyanandhan, S.S., Ganesan, L.: Fruit recognition using color and texture features. J. Emerg. Trends Comput. Inf. Sci. 1(2), 90–94 (2010)

    Google Scholar 

  5. Galleguillos, C., Rabinovich, A., Belongie, S.: Object categorization using co-occurrence, location and appearance. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2008, pp. 1–8. IEEE (2008)

    Google Scholar 

  6. Murphy, K., Freeman, W.: Contextual models for object detection using boosted random fields. In: NIPS (2004)

    Google Scholar 

  7. Wolf, L., Bileschi, S.: A critical view of context. Int. J. Comput. Vis. 69(2), 251–261 (2006)

    Article  Google Scholar 

  8. Lowe, D.G.: Object recognition from local scale-invariant features. In: The proceedings of the Seventh IEEE International Conference on Computer vision, 1999, vol. 2, pp. 1150–1157. IEEE (1999)

    Google Scholar 

  9. Tuytelaars, T., Van Gool, L., Bay, H., Ess, A.: Speeded-up robust features (surf). Comput. Vis. Image Underst. 110(3), 346–359 (2008)

    Article  Google Scholar 

  10. Abdel-Hakim, A.E., Farag, A. et al.: Csift: a sift descriptor with color invariant characteristics. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 1978–1983. IEEE (2006)

    Google Scholar 

  11. Suga, A., Fukuda, K., Takiguchi, T., Ariki, Y.: Object recognition and segmentation using sift and graph cuts. In: 19th International Conference on Pattern Recognition, ICPR 2008, pp. 1–4. IEEE (2008)

    Google Scholar 

  12. Ruf, B., Kokiopoulou, E., Detyniecki, M.: Mobile museum guide based on fast SIFT recognition. In: Detyniecki, M., Leiner, U., Nürnberger, A. (eds.) AMR 2008. LNCS, vol. 5811, pp. 170–183. Springer, Heidelberg (2010)

    Google Scholar 

  13. Mehrotra, H., Majhi, B., Gupta, P.: Annular Iris recognition using SURF. In: Chaudhury, S., Mitra, S., Murthy, C.A., Sastry, P.S., Pal, S.K. (eds.) PReMI 2009. LNCS, vol. 5909, pp. 464–469. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  14. Khoshelham, K.: Extending generalized hough transform to detect 3d objects in laserrange data. In: ISPRS Workshop on Laser Scanning and SilviLaser 2007, 12–14 September 2007, Espoo, Finland. International Society for Photogrammetry and Remote Sensing (2007)

    Google Scholar 

  15. Flitton, G.T., Breckon, T.P., Bouallagu, N.M.: Object recognition using 3d sift in complex ct volumes. In: BMVC, pp. 1–12 (2010)

    Google Scholar 

  16. Knopp, J., Prasad, M., Willems, G., Timofte, R., Van Gool, L.: Hough transform and 3D SURF for robust three dimensional classification. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part VI. LNCS, vol. 6316, pp. 589–602. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  17. Zhong, Y.: Intrinsic shape signatures: a shape descriptor for 3d object recognition. In: 2009 IEEE 12th International Conference on Computer Vision Workshops (ICCV Workshops), pp. 689–696. IEEE (2009)

    Google Scholar 

  18. Drost, B., Ulrich, M., Navab, N., Ilic, S.: Model globally, match locally: efficient and robust 3d object recognition. In: 2010 IEEEConference on Computer Vision and Pattern Recognition (CVPR), pp. 998–1005. IEEE (2010)

    Google Scholar 

  19. Papazov, C., Burschka, D.: An efficient RANSAC for 3D object recognition in noisy and occluded scenes. In: Kimmel, R., Klette, R., Sugimoto, A. (eds.) ACCV 2010, Part I. LNCS, vol. 6492, pp. 135–148. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  20. Tombari, F., Salti, S., Di Stefano, L.: Unique signatures of histograms for local surface description. In: Maragos, P., Paragios, N., Daniilidis, K. (eds.) ECCV 2010, Part III. LNCS, vol. 6313, pp. 356–369. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  21. Tombari, F., Di Stefano, L.: Hough voting for 3d object recognition under occlusion and clutter. IPSJ Trans. Comput. Vis. Appl. 4, 20–29 (2012)

    Google Scholar 

  22. Rodolà, E., Albarelli, A., Bergamasco, F., Torsello, A.: A scale independent selection process for 3d object recognition in cluttered scenes. Int. J. Comput. Vis. 102(1–3), 129–145 (2013)

    Article  MathSciNet  Google Scholar 

  23. Shafer, G., et al.: A Mathematical Theory of Evidence, vol. 1. Princeton University Press, Princeton (1976)

    MATH  Google Scholar 

  24. Rusu, R.B., Cousins, S.: 3d is here: point cloud library (pcl). In: 2011 IEEE International Conference on Robotics and Automation (ICRA), pp. 1–4. IEEE (2011)

    Google Scholar 

  25. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)

    Article  Google Scholar 

  26. Smets, P.: Constructing the pignistic probability function in a context ofuncertainty. In: UAI, vol. 89, pp. 29–40 (1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Didier Coquin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Nguyen, TL., Coquin, D., Boukezzoula, R. (2016). Recognition of Confusing Objects for NAO Robot. In: Carvalho, J., Lesot, MJ., Kaymak, U., Vieira, S., Bouchon-Meunier, B., Yager, R. (eds) Information Processing and Management of Uncertainty in Knowledge-Based Systems. IPMU 2016. Communications in Computer and Information Science, vol 610. Springer, Cham. https://doi.org/10.1007/978-3-319-40596-4_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40596-4_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40595-7

  • Online ISBN: 978-3-319-40596-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics