Advertisement

How Much Is “About”? Fuzzy Interpretation of Approximate Numerical Expressions

  • Sébastien LefortEmail author
  • Marie-Jeanne Lesot
  • Elisabetta Zibetti
  • Charles Tijus
  • Marcin Detyniecki
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 610)

Abstract

Approximate Numerical Expressions (ANEs) are linguistic expressions involving numbers and referring to imprecise ranges of values, such as “about 100”. This paper proposes to interpret ANEs as fuzzy numbers. A model, taking into account the cognitive salience of numbers and based on critical points from Pareto frontiers, is proposed to characterise the support, the kernel and the 0.5-cut of the corresponding membership functions. An experimental study, based on real data, is performed to assess the quality of these estimated parameters.

Keywords

Approximate numerical expression Fuzzy number Pareto frontier Empirical study Number salience 

Notes

Aknowledgments

This work was performed within the Labex SMART (ANR-11-LABX-65) supported by French state funds managed by the ANR within the Investissements d’Avenir programme under reference ANR-11-IDEX-0004-02.

References

  1. 1.
    Bilgiç, T., Türkşen, I.B.: Measurement of membership functions: Theoretical and empirical work. In: Fundamentals of Fuzzy Sets. The Handbooks of Fuzzy Sets Series, vol. 7, pp. 195–227. Springer, US (2000)Google Scholar
  2. 2.
    Dehaene, S., Mehler, J.: Cross-linguistic regularities in the frequency of number words. Cognition 43(1), 1–29 (1992)CrossRefGoogle Scholar
  3. 3.
    Ehrgott, M.: Multicriteria Optimization, vol. 491. Springer Science & Business Media, Berlin (2013)zbMATHGoogle Scholar
  4. 4.
    Ferson, S., O’Rawe, J., Antonenko, A., Siegrist, J., Mickley, J., Luhmann, C.C., Sentz, K., Finkel, A.M.: Natural language of uncertainty: numeric hedge words. Int. J. Approximate Reasoning 57, 19–39 (2015)CrossRefGoogle Scholar
  5. 5.
    González, A., Pons, O., Vila, M.A.: Dealing with uncertainty and imprecision by means of fuzzy numbers. Int. J. Approximate Reasoning 21(3), 233–256 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Hersh, H.M., Caramazza, A.: A fuzzy set approach to modifiers and vagueness in natural language. J. Exp. Psychol. Gen. 105(3), 254–276 (1976)CrossRefGoogle Scholar
  7. 7.
    Jansen, C.J.M., Pollmann, M.M.W.: On round numbers: Pragmatic aspects of numerical expressions. J. Quant. Linguist. 8(3), 187–201 (2001)CrossRefGoogle Scholar
  8. 8.
    Krifka, M.: Approximate interpretations of number words: A case for strategic communication. In: Cognitive Foundations of Interpretation, pp. 111–126, Amsterdam (2007)Google Scholar
  9. 9.
    Lakoff, G.: Hedges: A study in meaning criteria and the logic of fuzzy concepts. J. Philos. Logic 2(4), 458–508 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Lasersohn, P.: Pragmatic halos. Language 75(3), 522–551 (1999)CrossRefGoogle Scholar
  11. 11.
    Prince, E.F., Frader, J., Bosk, C., Dipietro, R.J.: On hedging in physician-physician discourse. In: Linguistics and the professions. Ablex, Norwood, NJ (1982)Google Scholar
  12. 12.
    Sauerland, U., Stateva, P.: Scalar vs. epistemic vagueness: Evidence from approximators. Proceedings of SALT (1995). 228–245 (2007)Google Scholar
  13. 13.
    Solt, S.: An alternative theory of imprecision. In: Semantics and Linguistic Theory,vol. 24, pp. 514–533 (2014)Google Scholar
  14. 14.
    Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning. Inf. Sci. 8(3), 199–249 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Zadeh, L.A.: A computational approach to fuzzy quantifiers in natural languages. Comput. Math. Appl. 9(1), 149–184 (1983)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Sébastien Lefort
    • 1
    Email author
  • Marie-Jeanne Lesot
    • 1
  • Elisabetta Zibetti
    • 2
  • Charles Tijus
    • 2
  • Marcin Detyniecki
    • 1
    • 3
  1. 1.Sorbonne Universités, UPMC Univ Paris 06, CNRS, LIP6 UMR 7606ParisFrance
  2. 2.Laboratoire CHArt-LUTIN, EA 4004, Université Paris 8Saint-Denis - Cedex 02France
  3. 3.Polish Academy of Sciences, IBS PANWarsawPoland

Personalised recommendations