Advertisement

Abstract

A brief survey of mathematical gnostics is presented. Mathematical gnostics is a tool of advanced data analysis, consisting of
  1. 1.

    theory of individual uncertain data and small samples,

     
  2. 2.

    algorithms to implement the theory,

     
  3. 3.

    applications of the algorithms.

     

The axioms and definitions of the theory are inspired by the Laws of Nature dealt with by physics and the investigation of data uncertainty follows the methods of analysis of physical processes. The first axiom is a reformulation of the measurement theory which mathematically formalizes the empirical cognitive activity of physics. This axiom enables the curvature of the data space to be revealed and quantified. The natural affinity between uncertain data and relativistic mechanics is also shown. Probability, informational entropy and information of individual uncertain data item are inferred from non-statistical Clausius’ thermodynamical entropy. The quantitative cognitive activity is modeled as a closed cycle of quantification and estimation, which is proved to be irreversible and maximizes the result’s information. A proper estimation of the space’s curvature ensure a reliable robustness of the algorithms successfully proven in many applications. Gnostic formulae of data weights and errors, probability and information, which has been proved as valid for small samples of strongly uncertain data converge to statistical ones when uncertainty becomes weak. From this point of view, the mathematical gnostics can be considered as an extension of statistics useful under heavy-duty conditions.

Keywords

Influence Function Uncertain Data Robust Regression Minkowskian Plane Marginal Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Rastrigin, P.A., Markov, V.A.: Cybernetic Models of Recognition. Zinatne, Riga (1976). (in Russian)Google Scholar
  2. 2.
    von Helmholtz, H.: Zaehlen und Messen erkentniss-theoretisch betrachtet. In: Philosophische Aufsaetze Eduard Zeller Gewidmet, Leipzig, pp. 17–52(1887). (in German)Google Scholar
  3. 3.
    Kovanic, P.: Gnostical theory of individual data. Prob. Control Inform. Theory 13, 259–271 (1984)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Kovanic P.: Gnostická teorie neurčitých dat, (Gnostic Theory of Uncertain Data), doctor (DrSc.) dissertation, The Institute of Information Theory and Automation, Czechoslovak Academy of Sciences, Prague, 161 pp. (1990). (in Czech)Google Scholar
  5. 5.
    Kovanic, P.: On relations between information and physics. Prob. Control Inf. Theory 13, 383–399 (1984)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Kovanic, P.: A new theoretical and algorithmical basis for estimation. Ident. Control Autom. V22(6), 657–674 (1986)zbMATHGoogle Scholar
  7. 7.
    Perez, A.: Mathematical theory of information. Appl. Math. 3(1), 81–99 (1958). (in Czech)MathSciNetGoogle Scholar
  8. 8.
    von Bayerer, H.C.: Maxwell’s Demon. Random House Inc., New York (1998)Google Scholar
  9. 9.
    Parzen, E.: On estimation of a probability density function and mode. Ann. Math. Statist. 33, 1065–1076 (1962)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Linnik, Y.V.: The Least Square Method and Basics of Observation Treatment. GIM-FL, Moscow (1962). (in Russion)Google Scholar
  11. 11.
    Coleman, D., Holland, P., Kaden, N., Klema, V., Peters, S.C.: A system of subroutines for iteratively re-weighted least-squares computation. ACM Trans. Math. Softw. 6, 327–336 (1980)CrossRefzbMATHGoogle Scholar
  12. 12.
    Kovanic, P., Humber, M.B.: The Economics of Information, 717 p. (2015). www.math-gnostics.com
  13. 13.
    Focus on Key Sources of Environmental Risk. www.projectfoks.eu
  14. 14.
    European Project 2-FUN: Improving Risk Assessment. www.2-fun.org
  15. 15.
    Jacquemin, J., Bendová, M., Sedláková, Z., Holbrey, J.D., Mullan, C.L., Youngs, T.G.A., Pison, L., Wagner, Z., Aim, K., Costa Gomes, M.F., Hardacre, C.: Phase behaviour, interactions, and structural studies of (Amines+Ionic Liquids) binary mixtures. (Eng) Chem. Phys. Chem. 13(7), 1825–1835 (2012)Google Scholar
  16. 16.
    Borsós, T., Řimnáčová, D., Ždímal, V., Smolík, J., Wagner, Z., Weidinger, T., Burkart, J., Steiner, G., Reischl, G., Hitzenberger, R., Schwarz, J., Salma, I.: Comparison of particulate number concentrations in three central european capital cities. (Eng) Sci. Total Environ. 433, 418–426 (2012)CrossRefGoogle Scholar
  17. 17.
    Setničková, K., Wagner, Z., Noble, R., Uchytil, P.: Semi-empirical model of toluene transport in polyethylene membranes based on the data using a new type of apparatus for determining gas permeability, diffusivity and solubility. (Eng) J. Membr. Sci. 66(22), 5566–5574 (2011)Google Scholar
  18. 18.
    Andresová, A., Storch, J., Traikia, M., Wagner, Z., Bendová, M., Husson, P.: Branched and cyclic alkyl groups in imidazolium-based ionic liquids: molecular organization and physicochemical properties. (Eng) Fluid Phase Equilib. 371, 41–49 (2014)CrossRefGoogle Scholar
  19. 19.
    Wagner, Z., Kovanic, P.: Advanced Data Analysis for Industrial Applications, Modelling Smart Grids 2015, Prague, September 10–11 (2015). http://www.smartgrids2015.eu/

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Institute of Information Theory and Automation of Czech Academy of SciencesPragueCzech Republic

Personalised recommendations