On Imprecise Statistical Inference for Accelerated Life Testing

  • Frank P. A. CoolenEmail author
  • Yi-Chao Yin
  • Tahani Coolen-Maturi
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 610)


Accelerated life testing provides an interesting challenge for quantification of the uncertainties involved, in particular due to the required linking of items’ failure times, or failure time distributions, at different stress levels. This paper provides an initial exploration of the use of statistical methods based on imprecise probabilities for accelerated life testing, with explicit emphasis on prediction of a future observation at the actual stress level of interest. We apply nonparametric predictive inference at that stress level, in combination with an estimated parametric form for the function linking different levels. For the latter aspect imprecision is introduced, leading to observations at stress levels other than the actual level of interest, to be transformed to intervals at the latter level. We believe that this is the first attempt to apply imprecise probability methods to accelerated life testing scenarios, and argue in favour of doing so. The paper concludes with a discussion of related research topics.


Accelerated life testing Imprecise probability Nonparametric predictive inference Power-weibull model Right-censored data Survival functions 


  1. 1.
    Augustin, T., Coolen, F.P.A.: Nonparametric predictive inference and interval probability. J. Stat. Plan. Infer. 124, 251–272 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Augustin, T., Coolen, F.P.A., de Cooman, G., Troffaes, M.C.M.: Introduction to Imprecise Probabilities. Wiley, Chichester (2014)CrossRefzbMATHGoogle Scholar
  3. 3.
    Coolen, F.P.A.: On nonparametric predictive inference and objective bayesianism. J. Logic Lang. Inform. 15, 21–47 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Coolen, F.P.A.: Nonparametric predictive inference. In: Lovric, M. (ed.) International Encyclopedia of Statistical Science, pp. 968–970. Springer, Berlin (2011)CrossRefGoogle Scholar
  5. 5.
    Coolen, F.P.A., Coolen-Schrijner, P., Yan, K.J.: Nonparametric predictive inference in reliability. Reliab. Rng. Syst. Saf. 78, 185–193 (2002)CrossRefGoogle Scholar
  6. 6.
    Coolen, F.P.A., Utkin, L.V.: Imprecise reliability. In: Lovric, M. (ed.) International Encyclopedia of Statistical Science, pp. 649–650. Springer, Berlin (2011)CrossRefGoogle Scholar
  7. 7.
    Coolen, F.P.A., Yan, K.J.: Nonparametric predictive inference with right-censored data. J. Stat. Plan. Infer. 126, 25–54 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    De Finetti, B.: Theory of Probability. Wiley, Chichester (1974)zbMATHGoogle Scholar
  9. 9.
    Hill, B.M.: Posterior distribution of percentiles: Bayes’ theorem for sampling from a population. J. Am. Stat. Assoc. 63, 677–691 (1968)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Kaplan, E.L., Meier, P.: Nonparametric estimation from incomplete observations. J. Am. Stat. Assoc. 53, 457–481 (1958)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Lawless, J.F.: Statistical Models and Methods for Lifetime Data. Wiley, New York (1982)zbMATHGoogle Scholar
  12. 12.
    Maciejewski, H.: Accelerated life test data analysis with generalised life distribution function and with no aging model assumption. Microelectron. Reliab. 35, 1047–1051 (1995)CrossRefGoogle Scholar
  13. 13.
    Maturi, T.A.: Nonparametric predictive inference for multiple comparisons. Ph.D. Thesis, Durham University (2010)Google Scholar
  14. 14.
    Maturi, T.A., Coolen-Schrijner, P., Coolen, F.P.A.: Nonparametric predictive inference for competing risks. J. Risk Reliab. 224, 11–26 (2010)zbMATHGoogle Scholar
  15. 15.
    Nelson, W.B.: Accelerated Testing: Statistical Models, Test Plans, and Data Analysis. Wiley, Hoboken (1990)CrossRefzbMATHGoogle Scholar
  16. 16.
    Nonparametric Predictive Inference.
  17. 17.
    Utkin, L.V., Coolen, F.P.A.: Imprecise reliability: an introductory overview. In: Levitin, G. (ed.) Computational Intelligence in Reliability Engineering, Volume 2: New Metaheuristics, Neural and Fuzzy Techniques in Reliability, pp. 261–306. Springer, Berlin (2007)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Frank P. A. Coolen
    • 1
    Email author
  • Yi-Chao Yin
    • 2
  • Tahani Coolen-Maturi
    • 3
  1. 1.Department of Mathematical SciencesDurham UniversityDurhamUK
  2. 2.Institute of Reliability EngineeringUniversity of Electronic Science and Technology of ChinaChengduChina
  3. 3.Durham University Business School, Durham UniversityDurhamUK

Personalised recommendations