Advertisement

Abstract

We investigate the properties of the upper probability associated with a bivariate p-box, that may be used as a model for the imprecise knowledge of a bivariate distribution function. We give necessary and sufficient conditions for this upper probability to be maxitive, characterize its focal elements, and study which maxitive functions can be obtained as upper probabilities of bivariate p-boxes.

Keywords

Coherent lower and upper probabilities Uni- and bivariate p-boxes Maxitive functions Focal sets Random sets 

Notes

Acknowledgements

The research reported in this paper has been supported by project TIN2014-59543-P.

References

  1. 1.
    Augustin, T., Coolen, F., de Cooman, G., Troffaes, M. (eds.): Introduction to Imprecise Probabilities. Wiley, Hoboken (2014)zbMATHGoogle Scholar
  2. 2.
    Couso, I., Sánchez, L., Gil, P.: Imprecise distribution function associated to a random set. Inf. Sci. 159, 109–123 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Dubois, D., Prade, H.: Possibility Theory. Plenum Press, New York (1988)CrossRefzbMATHGoogle Scholar
  4. 4.
    Ferson, S., Kreinovich, V., Ginzburg, L., Myers, D., Sentz, K.: Constructing probability boxes and Dempster-Shafer structures. Technical report, Sandia (2003)Google Scholar
  5. 5.
    Miranda, E., Couso, I., Gil, P.: Relationships between possibility measures and nested random sets. Int. J. Uncertainty Fuzziness Knowl.-Based Syst. 10, 1–15 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Montes, I., Miranda, E., Pelessoni, R., Vicig, P.: Sklar’s theorem in an imprecise setting. Fuzzy Sets Syst. 278, 48–66 (2015)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Nelsen, R.: An Introduction to Copulas. Springer, New York (2006)zbMATHGoogle Scholar
  8. 8.
    Pelessoni, R., Vicig, P., Montes, I., Miranda, E.: Bivariate p-boxes. Int. J. Uncertainty Fuzziness Knowl.-Based Syst. 24, 229–263 (2016)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press, Princeton (1976)zbMATHGoogle Scholar
  10. 10.
    Troffaes, M., Destercke, S.: Probability boxes on totally preordered spaces for multivariate modelling. Int. J. App. Reason. 52, 767–791 (2011)CrossRefzbMATHGoogle Scholar
  11. 11.
    Troffaes, M., Miranda, E., Destercke, S.: On the connection between probability boxes and possibility measures. Inf. Sci. 224, 88–108 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Walley, P.: Statistical Reasoning with Imprecise Probabilities. Chapman and Hall, London (1991)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of StatisticsCarlos III University of MadridGetafeSpain
  2. 2.Department of Statistics and Operations ResearchUniversity of OviedoOviedoSpain

Personalised recommendations