Advertisement

Abstract

We provides an axiomatic characterization of preorders in lattices that are representable as benchmarking procedure. We show that the key axioms are related to compatibility with lattice operations.

This paper propose also a characterization and a generalization of Sugeno integral in a ordinal framework.

Keywords

Lattice Benchmark Congruence Compatible preorder Aggregation function Sugeno integral 

References

  1. 1.
    Birkhoff, G.: Lattice Theory, Colloquium Pub, vol. 25. American Mathematical Society, Providence, R.I. (1967)Google Scholar
  2. 2.
    Couceiro, M., Marichal, J.-L.: Polynomial functions over bounded distributive lattices. J. Mul-Valued Log S 18, 247–256 (2012)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Couceiro, M., Marichal, J.L.: Characterizations of discrete Sugeno integrals as lattice polynomial functions. In: Proceedings of the 30th Linz Seminar on Fuzzy Set Theory (LINZ2009), pp. 17–20 (2009)Google Scholar
  4. 4.
    Couceiro, M., Marichal, J.L.: Characterizations of discrete Sugeno integrals as polynomial functions over distributive lattices. Fuzzy Set Syst. 161, 694–707 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Chambers, C.P., Miller, A.D.: Scholarly influence. J. Econ. Theory 151(1), 571–583 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Chambers, C.P., Miller, A.D.: Benchmarking, working paper (2015)Google Scholar
  7. 7.
    Caspard, N., Leclerc, B., Monjardet, B.: Finite Ordered Sets. Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge (2012)zbMATHGoogle Scholar
  8. 8.
    Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order. Cambridge University Press, New York (2002)CrossRefzbMATHGoogle Scholar
  9. 9.
    Fishburn, P.C.: Signed order and power set extensions. J. Econ. Theory 56, 1–19 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Grabisch, M., Marichal, J.L., Mesiar, R., Pap, E.: Aggregation Functions. Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge (2009)CrossRefzbMATHGoogle Scholar
  11. 11.
    Grätzer, G.: General Lattice Theory. Birkhäuser Verlag, Berlin (2003)zbMATHGoogle Scholar
  12. 12.
    Halas̆ R., Mesiar, R., Pócs, J.: A new characterization of the discrete Sugeno integral. Inform. Fusion 29, 84–86 (2016)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of EconomicsUniversità Ca’ Foscari VeneziaVeniceItaly

Personalised recommendations