A 2-Additive Choquet Integral Model for French Hospitals Rankings in Weight Loss Surgery

  • Brice MayagEmail author
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 610)


In a context of Multiple Criteria Decision Aid, we present a decision model explaining some French hospitals rankings in weight loss surgery. To take into account interactions between medical indicators, we elaborated a model based on the 2-additive Choquet integral. The reference subset, defined during the elicitation process of this model, is composed by some specific alternatives called binary alternatives. To validate our approach, we showed that the proposed 2-additive Choquet integral model is able to approximate the hospitals ranking, in weight loss surgery, published by the French magazine “Le Point” in August 2013.


MCDA Binary alternatives Hospitals rankings Choquet integral Capacity 


  1. 1.
    Bana e Costa, C.A., De Corte, J.M., Vansnick, J.C.: On the mathematical foundations of MACBETH. In: Figueira, J., Greco, S., Ehrgott, M. (eds.) Multiple Criteria Decision Analysis: State of the Art Surveys, pp. 409–437. Springer, New York (2005)CrossRefGoogle Scholar
  2. 2.
    Bana e Costa, C.A., Vansnick, J.C.: The MACBETH approach: basic ideas, software and an application. In: Meskens, N., Roubens, M. (eds.) Advances in DecisionAnalysis, pp. 131–157. Kluwer Academic Publishers, Dordrecht (1999)Google Scholar
  3. 3.
    Baron, S., Duclos, C., Thoreux, P.: Orthopedics coding and funding. Orthop. Traumatol. Surg. Res. 100(1 Supplement), 99–106 (2014). 2013 Instructional Course Lectures (SoFCOT)CrossRefGoogle Scholar
  4. 4.
    Billaut, J.-C., Bouyssou, D., Vincke, P.: Should you believe in the shanghai ranking? - an mcdm view. Scientometrics 84(1), 237–263 (2010)CrossRefGoogle Scholar
  5. 5.
    Bouyssou, D., Couceiro, M., Labreuche, C., Marichal, J.-L., Mayag, B.: Using choquet integral in machine learning: What can MCDA bring? In: DA2PL 2012 Workshop: From Multiple Criteria Decision Aid to Preference Learning, Mons, Belgique (2012)Google Scholar
  6. 6.
    Bouyssou, D., Marchant, T., Pirlot, M., Tsoukiàs, A.: Evaluation and Decision Models: A Critical Perspective. Kluwer Academic, Dordrecht (2000)CrossRefzbMATHGoogle Scholar
  7. 7.
    Bouyssou, D., Marchant, T., Pirlot, M., Tsoukiàs, A., Vincke, P.: Evaluation and Decision Models: Stepping Stones for the Analyst. Springer Verlag, New York (2006)zbMATHGoogle Scholar
  8. 8.
    Dyer, J.S.: MAUT - multiattribute utility theory. In: Figueira, J., Greco, S., Ehrgott, M. (eds.) Multiple Criteria Decision Analysis: State of the Art Surveys, pp. 265–285. Springer Verlag, Boston, Dordrecht, London (2005)Google Scholar
  9. 9.
    Fürnkranz, J., Hüllermeier, E.: Preference Learning. Springer, New York (2011)CrossRefzbMATHGoogle Scholar
  10. 10.
    Grabisch, M.: \(k\)-order additive discrete fuzzy measures and their representation. Fuzzy Sets Syst. 92, 167–189 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Grabisch, M., Labreuche, C.: A decade of application of the Choquet, Sugeno integrals in multi-criteria decision aid. 4OR 6, 1–44 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Labreuche, C. Le Huédé, F.: Myriad: a tool suite for MCDA. In: International Conference of the Euro Society for Fuzzy Logic and Technology(EUSFLAT), Barcelona, Spain, September, 7–9 2005, pp. 204–209 (2005)Google Scholar
  13. 13.
    De Linares, J.: Hôpitaux et cliniques: Le palmarès 2013. Le Figaro Magazine, pp. 39–49, 21 June 2013.
  14. 14.
    De Linares, J.: Le palmarès national 2013: Hôpitaux et cliniques. Le Nouvel Observateur, pp. 77–117, 28 November 2013.
  15. 15.
    Malye, F., Vincent, J.: Hôpitaux et cliniques: Le palmarès 2013, pp. 86–142, 22 August 2013.
  16. 16.
    Mayag, B., Grabisch, M., Labreuche, C.: An interactive algorithm to deal with inconsistencies in the representation of cardinal information. In: Hüllermeier, E., Kruse, R., Hoffmann, F. (eds.) IPMU 2010. CCIS, vol. 80, pp. 148–157. Springer, Heidelberg (2010)Google Scholar
  17. 17.
    Mayag, B., Grabisch, M., Labreuche, C.: A characterization of the 2-additive Choquet integral through cardinal information. Fuzzy Sets Syst. 184(1), 84–105 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Mayag, B., Grabisch, M., Labreuche, C.: A representation of preferences by the Choquet integral with respect to a 2-additive capacity. Theory Decis. 71(3), 297–324 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Murofushi, T., Soneda, S., Techniques for reading fuzzy measures (III): interaction index.In: 9th Fuzzy System Symposium, Sapporo, Japan, pp. 693–696, May 1993. (in Japanese)Google Scholar
  20. 20.
    Shapley, L.S.: A value for \(n\)-person games. In: Kuhn, H.W., Tucker, A.W. (eds.) Contributions to the Theory of Games, Vol. II. Annals of Mathematics Studies, vol. 28, pp. 307–317. Princeton University Press, Princeton (1953)Google Scholar
  21. 21.
    Siskos, Y., Grigoroudis, E., Matsatsinis, N.F.: UTA methods. In: Figueira, J., Greco, S., Ehrgott, M. (eds.) Multiple Criteria Decision Analysis: State of the Art Surveys, pp. 297–343. Springer, New York (2005)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.University Paris-Dauphine, PSL Research University, LAMSADE, CNRS, UMR 7243Paris Cedex 16France

Personalised recommendations