Decomposition Integral Based Generalizations of OWA Operators

  • Radko Mesiar
  • Andrea StupňanováEmail author
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 610)


Based on the representation of OWA operators as Choquet integrals with respect to symmetric capacities, a new kind of OWA generalizations based on decomposition integrals is proposed and discussed. The symmetry of the underlying capacity is not sufficient to guarantee the symmetry of the resulting operator, and thus we deal with symmetric saturated decomposition systems only. All possible generalized OWA operators on \(X = \{1,2\}\) are introduced. Similarly, when considering the maximal decomposition system on \(X = \{1,2,3\},\) all generalized OWA operators are shown, based on the ordinal structure of the normed weighting vector \({\mathbf w} = (w_1,w_2,w_3).\)


Choquet integral Decomposition integral OWA operator Pan-integral Symmetric capacity 



The support of the grants APVV-14-0013 and VEGA 1/0682/16 is kindly announced.


  1. 1.
    Choquet, G.: Theory of capacities. Ann. Inst. Fourier 5, 131–295 (1953)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Emrouznejad, A., Marra, M.: Ordered weighted averaging operator: a citation-based literature survey. Int. J. Intell. Syst. 29, 994–1014 (2014)CrossRefGoogle Scholar
  3. 3.
    Even, Y., Lehrer, E.: Decomposition-integral: unifying Choquet and the concave integrals. Econ. Theory 56(1), 1–26 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Grabisch, M.: Fuzzy integral in multicriteria decision making. Fuzzy Sets Syst. 69(3), 279–298 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Grabisch, M., Marichal, J.L., Mesiar, R., Pap, E.: Aggregation Functions. Cambridge University Press, Cambridge (2009)CrossRefzbMATHGoogle Scholar
  6. 6.
    Klement, E.P., Mesiar, R., Pap, E.: A universal integral as common frame for Choquet and Sugeno integral. IEEE Trans. Fuzzy Syst. 18, 178–187 (2010)CrossRefGoogle Scholar
  7. 7.
    Lehrer, E.: A new integral for capacities. Econ. Theory 39, 157–176 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Mesiar, R., Li, J., Pap, E.: Superdecomposition integrals. Fuzzy Sets and Syst. 259, 3–11 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Mesiar, R., Stupňanová, A.: Decomposition integrals. Int. J. Approximate Reason. 54, 1252–1259 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Mesiar, R., Stupňanová, A., Yager, R.R.: Generalizations of OWA operators. IEEE Trans. Fuzzy Syst. 23(6), 2154–2162 (2015)CrossRefGoogle Scholar
  11. 11.
    Miranda, P., Grabisch, M., Gil, P.: p-symmetric fuzzy measures. Int. J. Uncertainty Fuzziness Knowl.-Based Syst. 10, 105–123 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Shilkret, N.: Maxitive measure and integration. Indag. Math. 33, 109–116 (1971)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Yager, R.R.: On ordered weighted averaging aggregation operators in multicriteria decisionmaking. IEEE Trans. Syst. Man Cybern. 18(1), 183–190 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Yager, R.R.: Induced aggregation operators. Fuzzy Sets Syst. 137(1), 59–69 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Yager, R.R.: Generalized OWA aggregation operators. Fuzzy Optim. Decis. Making 3(1), 93–107 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Yager, R.R., Filev, D.P.: Induced ordered weighted averaging operators. IEEE Trans. Syst. Man Cybern. Part B Cybern. 29(2), 141–150 (1999)CrossRefGoogle Scholar
  17. 17.
    Yang, Q.: The pan-integral on the fuzzy measure space. Fuzzy Math. 3, 107–114 (1985)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Faculty of Civil EngineeringSlovak University of TechnologyBratislavaSlovak Republic

Personalised recommendations