Skip to main content

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 67))

  • 990 Accesses

Abstract

The research of switched systems is mainly carried out with the research of hybrid systems [15].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Witsenhausen, H. S. (1966). A class of hybrid-state continuous-time dynamic systems. IEEE Transactions on Automatic Control, 11(2), 161–167.

    Article  Google Scholar 

  2. Huang, L., & Mao, X. (2011). Stability of singular stochastic systems with Markovian switching. IEEE Transactions on Automatic Control, 56(2), 424–429.

    Article  MathSciNet  Google Scholar 

  3. Deng, F., Luo, Q., & Mao, X. (2012). Stochastic stabilization of hybrid differential equations. Automatica, 48(9), 2321–2328.

    Article  MathSciNet  MATH  Google Scholar 

  4. Fragoso, M. D., & Costa, O. L. (2010). A separation principle for the continuous- time LQ-problem with Markovian jump parameters. IEEE Transactions on Automatic Control, 55(12), 2692–2707.

    Article  MathSciNet  Google Scholar 

  5. Görges, D., Izák, M., & Liu, S. (2011). Optimal control and scheduling of switched systems. Transactions on Automatic Control, 56(1), 135–140.

    Article  MathSciNet  Google Scholar 

  6. Merton, R. C. (1976). Option pricing when underlying stock returns are discontinuous. Journal of Financial Economics, 3(1), 125–144.

    Article  MATH  Google Scholar 

  7. Guo, X. (2011). Information and option pricings. Quantitative Finance, 1(1), 38–44.

    Article  MathSciNet  Google Scholar 

  8. Guo, X. (2001). An explicit solution to an optimal stopping problem with regime switching. Journal of Applied Probability, 38(2), 464–481.

    Article  MathSciNet  MATH  Google Scholar 

  9. Jobert, A., & Rogers, L. C. (2006). Option pricing with Markov-modulated dynamics. SIAM Journal on Control and Optimization, 44(6), 2063–2078.

    Article  MathSciNet  MATH  Google Scholar 

  10. Elliott, R. J., Siu, T. K., Chan, L., & Lau, J. W. (2007). Pricing options under a generalized Markov-modulated jump-diffusion model. Stochastic Analysis and Applications, 25(4), 821–843.

    Article  MathSciNet  MATH  Google Scholar 

  11. Krasovskii, N. M., & Lidskii, E. A. (1961). Analytical design of controllers in systems with random attributes. Automation and Remote Control, 22(1–3), 1021–1025.

    MathSciNet  Google Scholar 

  12. Florentin, J. J. (1961). Optimal control of continuous time, Markov, stochastic systems†. International Journal of Electronics, 10(6), 473–488.

    Article  MathSciNet  Google Scholar 

  13. Lin, X.-Z., Z, S.-H., & Yun, Li. (2008). Output feedback stabilization of invariant sets for nonlinear switched systems. Acta Automatica Sinic, 34(7), 784–791.

    Article  MathSciNet  MATH  Google Scholar 

  14. Daafouz, J., Riedinger, P., & Iung, C. (2002). Stability analysis and control synthesis for switched systems: A switched Lyapunov function approach. IEEE Transactions on Automatic Control, 47(11), 1883–1887.

    Article  MathSciNet  Google Scholar 

  15. Bacciotti, A. (2002). Stabilization by means of state space depending switching rules. Systems & Control Letters, 53(3), 195–201.

    MathSciNet  MATH  Google Scholar 

  16. Cheng, D., Guo, L., Lin, Y., & Wang, Y. (2005). Stabilization of switched linear systems. IEEE Transactions on Automatic Control, 50(5), 661–666.

    Article  MathSciNet  Google Scholar 

  17. Zhao, J., & Dimirovski, G. M. (2004). Quadratic stability of a class of switched nonlinear systems. IEEE Transactions on Automatic Control, 49(4), 574–578.

    Article  MathSciNet  Google Scholar 

  18. Wicks, M., Peleties, P., & DeCarlo, R. (1994, December). Construction of piecewise Lyapunov functions for stabilizing switched systems. In Proceedings of the 33rd IEEE Conference on Decision and Control, 1994 (Vol. 4, pp. 3492–3497). IEEE.

    Google Scholar 

  19. Zhai, G., Lin, H., & Antsaklis, P. J. (2003). Quadratic stabilizability of switched linear systems with polytopic uncertainties. International Journal of Control, 76(7), 747–753.

    Article  MathSciNet  MATH  Google Scholar 

  20. Geromel, J. C., Colaneri, P., & Bolzern, P. (2008). Dynamic output feedback control of switched linear systems. IEEE Transactions on Automatic Control, 53(3), 720–733.

    Article  MathSciNet  Google Scholar 

  21. Mao X, Yuan C. (2006). Stochastic differential equations with Markovian switching. London: Imperial College Press.

    Google Scholar 

  22. Sworder, D. D. (1969). Feedback control of a class of linear systems with jump parameters. IEEE Transactions on Automatic Control, 14(1), 9–14.

    Article  MathSciNet  Google Scholar 

  23. Wonham, W. M. (1970). Random differential equations in control theory. Probabilistic methods in applied mathematics, 2(3), 131–212.

    MathSciNet  MATH  Google Scholar 

  24. Boukas, E. K., & Liu, Z. K. (2001). Jump linear quadratic regulator with controlled jump rates. IEEE Transactions on Automatic Control, 46(2), 301–305.

    Article  MathSciNet  MATH  Google Scholar 

  25. Sun, Z.-D. (2006). Stabilization and optimization of switched linear systems. Automatica, 42(5), 783–788.

    Article  MathSciNet  MATH  Google Scholar 

  26. Mahmoud, M. S., Nounou, M. N., & Nounou, H. N. (2007). Analysis and synthesis of uncertain switched discrete-time systems. IMA Journal of Mathematical Control and Information, 24(2), 245–257.

    Article  Google Scholar 

  27. Zhang, L. X., & Boukas, E. K. (2009). Stability and stabilization of Markovian jump linear systems with partly unknown transition probabilities. Automatica., 45(2), 463–468.

    Article  MathSciNet  MATH  Google Scholar 

  28. Zhang, L. X., & Boukas, E. K. (2009). Mode-dependent H filtering for discrete-time Markovian jump linear systems with partly unknown transition probabilities. Automatica, 45(6), 1462–1467.

    Article  MathSciNet  MATH  Google Scholar 

  29. Zhang, L. X., & Boukas, E. K. (2009). control for discrete-time Markovian jump linear systems with partly unknown transition probabilities. International Journal of Robust and Nonlinear Control, 19(8), 868–883.

    Article  MathSciNet  MATH  Google Scholar 

  30. Zhang, L. X. (2009). Boukas EK. control of a class of extended Markov jump linear systems. IET Control Theory and Applications, 3(7), 834–842.

    Article  MathSciNet  Google Scholar 

  31. Guo, J.-F. (2006). Variable structure control of time-delay singular systems (Doctoral dissertation, Ocean University of China).

    Google Scholar 

  32. Dong, M. (2008). Analysis and control for singular bilinear Markovian jump systems (Doctoral dissertation, Tianjin University).

    Google Scholar 

  33. Zhang, X.-H., & Zhang, Q.-L. (2012). Robust passive control for uncertain singular bilinear system. Journal of Shenyang University (Natural Science), 24(4), 41–44.

    Google Scholar 

  34. Basar, T., & Olsder, G. J. (1999). Dynamic noncooperative game theory (2nd edn.). Philadelphia, PA: SIAM.

    Google Scholar 

  35. Mizukami, K., & Xu, H. (1992). Closed-loop Stackelberg strategies for linear-quadratic descriptor systems. Journal of Optimization Theory and Applications, 74(1), 151–170.

    Article  MathSciNet  MATH  Google Scholar 

  36. Xu, H., & Mizukami, K. (1993). Two-person two-criteria decision making problems for descriptor systems. Journal of Optimization Theory and Applications, 78(1), 163–173.

    Article  MathSciNet  MATH  Google Scholar 

  37. Xu, H., & Mizukami, K. (1994). New sufficient conditions for linear feedback closed-loop Stackelberg strategy of descriptor system. IEEE Transactions on Automatic Control, 39(5), 1097–1102.

    Article  MathSciNet  MATH  Google Scholar 

  38. Xu, H., & Mizukami, K. (1994). Linear-quadratic zero-sum differential games for generalized state space systems. IEEE Transactions on Automatic Control, 39(1), 143–147.

    Article  MathSciNet  MATH  Google Scholar 

  39. Xu, H., & Mizukami, K. (1994). On the Isaacs equation of differential games for descriptor systems. Journal of Optimization Theory and Applications, 83(2), 405–419.

    Article  MathSciNet  MATH  Google Scholar 

  40. Xu, H., & Mizukami, K. (1997). Infinite-horizon differential games of singularly perturbed systems: A unified approac. Automatica, 33(2), 273–276.

    Article  MathSciNet  MATH  Google Scholar 

  41. Dockner, E., Jørgensen, S., Van Long, N., et al. (2000). Differential games in economics and management science. Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  42. Erickson, G. M. (2003). Dynamic models of advertising competition. Boston: Kluwer.

    Book  Google Scholar 

  43. Zhukovskiy, V. I. (2003). Lyapunov functions in differential games. London: Taylor & Francis.

    MATH  Google Scholar 

  44. Jørgensen, S., & Zaccour, G. (2004). Differential games in marketing. New York: Springer.

    Book  Google Scholar 

  45. Engwerda, J. C. (2005). LQ dynamic optimization and differential games. New York: Wiley.

    Google Scholar 

  46. Engwerda, J. C. (2000). The solution set of the N-player scalar feedback Nash algebraic Riccati equations. IEEE Transactions on Automatic Control, 45(12), 2363–2368.

    Article  MathSciNet  MATH  Google Scholar 

  47. Engwerda, J. C. (2003). Solving the scalar feedback Nash algebraic Riccati equations: an eigenvector approach. IEEE Transactions on Automatic Control, 48(5), 847–852.

    Article  MathSciNet  MATH  Google Scholar 

  48. Engwerda, J. C., & Salmah, W. I. E. (2009). The open-loop discounted linear quadratic differential game for regular higher order index descriptor systems. International Journal of Control, 82(12), 2365–2374.

    Article  MathSciNet  MATH  Google Scholar 

  49. Hamadene, S. (1999). Nonzero sum linear-quadratic stochastic differential games and backward–forward equations. Stochastic Analysis and Applications, 17(1), 117–130.

    Article  MathSciNet  MATH  Google Scholar 

  50. Zhang, S.-Y. (1987). Differential game. Beijing Science Press.

    Google Scholar 

  51. Li, D.-F. (2000). Differential game and its applications. Beijing National Defence Industrial Press.

    Google Scholar 

  52. Yong, J. (1994). Zero-sum differential games involving impulse controls. Applied Mathematics and Optimization, 29(3), 243–261.

    Article  MathSciNet  MATH  Google Scholar 

  53. Liu, X.-P. (1989). The leader-follower strategies and their extensions in singular systems (Doctoral dissertation, Northeastern University).

    Google Scholar 

  54. Wang, G.-C. (2007). Partially observed stochastic control systems and their applications (Doctoral dissertation, Shandong University).

    Google Scholar 

  55. Wu, Z., & Yu, Z.-Y. (2005). Linear quadratic nonzero sum differential games with random jumps. Applied Mathematics and Mechanics, 8(26): 945–950.

    Google Scholar 

  56. Yu, Z.-Y. (2008). Some backward problems in stochastic control and game theory (Doctoral dissertation, Shandong University).

    Google Scholar 

  57. Luo, C.-X. (2004). Indefinite stochastic linear quadratic (LQ) control problems (Doctoral dissertation, Dalian University of Technology).

    Google Scholar 

  58. Zheng, L.-H. (2000). A robust control approach to option pricing. Journal of Management Science in China, 3(3), 60–64.

    Google Scholar 

  59. Liu, H.-L., & Zheng, L.-H. (1999). The differential game approach for security investment decisions. Journal of Systems Engineering, 14(1), 69–72.

    MathSciNet  Google Scholar 

  60. Liu, H.-L., Wu, C.-F. (2001). Optimal consumption and investment strategy based on worst-case. Journal of Management Science in China, 4(6): 48–54.

    Google Scholar 

  61. Zhang, D.-X., & Chen, Z.-H. (2000). Examination on differential games to fishery resources quota allocation. Resources Science, 22(2), 61–65.

    Google Scholar 

  62. Zhao, Z.-Q., Wu, R.-M., & Wang, H.-C. (2004). Optimal operation of fishery resource. Journal of Systems Engineering, 19(4), 423–426.

    MATH  Google Scholar 

  63. Zhang, S.-P., & Zhang, S.-Y. (2005). Stackelberg differential game model for cooperative advertising strategies in supply chain. Journal of Southwest Jiaotong University, 40(4), 513–518.

    Google Scholar 

  64. Zhang, S.-P., & Zhang, S.-Y. (2006). Dynamic cooperative advertising strategies based on differential games in a supply chain. Control and Decision, 21(2), 153–157.

    MATH  Google Scholar 

  65. Fu, Q., & Zeng, S.-Q. (2007). Differential game models of the vertical cooperative advertising. Systems Engineering-Theory and Practice, 27(11), 26–33.

    Google Scholar 

  66. Fu, Q., & Zeng, S.-Q. (2008). Game analysis of cooperative advertising and ordering strategies in a supply chain under demand uncertainty. Systems Engineering-Theory and Practice, 28(3), 56–63.

    MathSciNet  Google Scholar 

  67. Xiong, Z.-K., Nie, J.-J., & Li, G.-D. (2009). Competitive brand and generic advertising strategy in oligopoly with differential game. Journal of Industrial Engineering and Engineering Management, 23(3), 72–79.

    Google Scholar 

  68. Xiong, Z.-K., & Zhang, H.-Y. (2009). Pricing strategy of closed-loop supply chain with asymmetric information. Industrial Engineering Journal, 12(003), 39–42.

    Google Scholar 

  69. Hespanha, J. P. (1998). Logic-based switching algorithms in control (Doctoral dissertation, Yale University).

    Google Scholar 

  70. Xu, S., & Chen, T. (2005). Robust H control for uncertain discrete-time stochastic bilinear systems with Markovian switching. International Journal of Robust and Nonlinear Control, 15(5), 201–217.

    Article  MathSciNet  MATH  Google Scholar 

  71. Hou, T., Zhang, W., & Ma, H. (2010). Finite horizon H2/H control for discrete-time stochastic systems with Markovian jumps and multiplicative noise. IEEE Transactions on Automatic Control, 55(5), 1185–1191.

    Article  MathSciNet  Google Scholar 

  72. Dorato, P., & Kestenbaum, A. (1967). Application of game theory to the sensitivity design of optimal systems. IEEE Transactions on Automatic Control, 12(1), 85–87.

    Article  Google Scholar 

  73. Başar, T. (1991). A dynamic games approach to controller design: disturbance rejection in discrete-time. IEEE Transactions on Automatic Control, 36(8), 936–952.

    Article  MathSciNet  MATH  Google Scholar 

  74. Limebeer, D. J. N., Anderson, B. D., & Hendel, B. (1994). A Nash game approach to mixed H2/H control. IEEE Transactions on Automatic Control, 39(1), 69–82.

    Article  MathSciNet  MATH  Google Scholar 

  75. Li, L.-L. (2009). Study on the H control problem for classes of switched nonlinear systems (Doctoral dissertation, Northeastern University).

    Google Scholar 

  76. Zhang, Z.-Z. (2009). The controlled Markov modulated jump diffusion processes and its applications (Doctoral dissertation, Central South University).

    Google Scholar 

  77. Su, T., & Zhan, Y.-R. (2006). VaR estimation based on SWARCH model. The Journal of Quantitative and Technical Economics, 22(12), 143–149.

    MathSciNet  Google Scholar 

  78. Su, T. (2007). Improved research on VaR measuring method of the financial market risk (Doctoral dissertation, Tianjin University).

    Google Scholar 

  79. Aganovic, Z., Gajic, Z., & Thoma, M. (1995). Linear optimal control of bilinear systems: With applications to singular perturbations and weak coupling. Springer, New York, Inc.

    Google Scholar 

  80. Zhang, J.-S. (2000). Computable nonlinear dynamic input output model. Tsinghua University Press.

    Google Scholar 

  81. Yao, X.-H. (2006). A study on pricing the loan for the commercial bank based on the reduced form models (Doctoral dissertation, Tianjin University).

    Google Scholar 

  82. Zhao, P. (2008). The analysis on the generation mechanism of speculative bubbles and the empirical study on Chinese stock markets (Doctoral dissertation, Huazhong University of Science and Technology).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng-ke Zhang .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this paper

Cite this paper

Zhang, Ck., Zhu, Hn., Zhou, Hy., Bin, N. (2017). Introduction. In: Non-cooperative Stochastic Differential Game Theory of Generalized Markov Jump Linear Systems. Studies in Systems, Decision and Control, vol 67. Springer, Cham. https://doi.org/10.1007/978-3-319-40587-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40587-2_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40586-5

  • Online ISBN: 978-3-319-40587-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics