Skip to main content

Ontology Learning from Interpretations in Lightweight Description Logics

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9575))

Abstract

Data-driven elicitation of ontologies from structured data is a well-recognized knowledge acquisition bottleneck. The development of efficient techniques for (semi-)automating this task is therefore practically vital — yet, hindered by the lack of robust theoretical foundations. In this paper, we study the problem of learning Description Logic TBoxes from interpretations, which naturally translates to the task of ontology learning from data. In the presented framework, the learner is provided with a set of positive interpretations (i.e., logical models) of the TBox adopted by the teacher. The goal is to correctly identify the TBox given this input. We characterize the key constraints on the models that warrant finite learnability of TBoxes expressed in selected fragments of the Description Logic \(\mathcal {EL}\) and define corresponding learning algorithms.

This work was funded in part by the National Research Foundation under Grant no. 85482.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    See http://www.w3.org/TR/owl2-profiles/.

  2. 2.

    An alternative, more general approach can be defined in terms of specific fragments of models. Such generalization, which lies beyond the scope of this paper, is essential when the learning problem concerns languages without finite model property.

References

  1. Maedche, A., Staab, S.: Ontology learning. In: Staab, S., Studer, R. (eds.) Handbook on Ontologies, pp. 173–189. Springer, New York (2004)

    Chapter  Google Scholar 

  2. Hoekstra, R.: The knowledge reengineering bottleneck. J. Semant. Web 1(1,2), 111–115 (2010)

    Google Scholar 

  3. Baader, F., Calvanese, D., Mcguinness, D.L., Nardi, D., Patel-Schneider, P.F.: The Description Logic Handbook: Theory, Implementation, and Applications. Cambridge University Press, New York (2003)

    MATH  Google Scholar 

  4. Baader, F., Brandt, S., Lutz, C.: Pushing the \({\cal {EL}}\) envelope. In: Proceedings of IJCAI-05 (2005)

    Google Scholar 

  5. De Raedt, L., Lavrač, N.: The many faces of inductive logic programming. In: Komorowski, J., Raś, Z.W. (eds.) ISMIS 1993. LNCS, vol. 689, pp. 435–449. Springer, Heidelberg (1993)

    Chapter  Google Scholar 

  6. De Raedt, L.: First order jk-clausal theories are PAC-learnable. Artif. Intell. 70, 375–392 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  7. Konev, B., Lutz, C., Ozaki, A., Wolter, F.: Exact learning of lightweight description logic ontologies. In: Proceedings of Principles of Knowledge Representation and Reasoning (KR-14) (2014)

    Google Scholar 

  8. Konev, B., Lutz, C., Wolter, F.: Exact learning of TBoxes in \({\cal {EL}}\) and DL-Lite. In: Proceedings of the 28th International Workshop on Description Logics (2015)

    Google Scholar 

  9. Lutz, C., Piro, R., Wolter, F.: Enriching \({\cal {EL}}\)-concepts with greatest fixpoints. In: Proceedings of the 19th European Conference on Artificial Intelligence (ECAI 2010), pp. 41–46. IOS Press (2010)

    Google Scholar 

  10. Shapiro, E.Y.: Inductive inference of theories from facts. In: Computational Logic: Essays in Honor of Alan Robinson (1991). MIT Press (1981)

    Google Scholar 

  11. Klarman, S., Britz, K.: Ontology learning from interpretations in lightweight description logics. Technical report, CSIR Centre for Artificial Intelligence Research, South Africa (2015). http://klarman.synthasite.com/resources/KlaBri-ILP15.pdf

  12. Pratt, V.: Models of program logics. In: Proceedings of Foundations of Computer Science (FOCS 1979) (1979)

    Google Scholar 

  13. Baader, F., Ganter, B., Sertkaya, B., Sattler, U.: Completing description logic knowledge bases using formal concept analysis. In: Proceedings of the 20th International Joint Conference on Artificial Intelligence (IJCAI-07) (2007)

    Google Scholar 

  14. Distel, F.: Learning description logic knowledge bases from data using methods from formal concept analysis. Ph.D. Thesis, TU Dresden (2011)

    Google Scholar 

  15. Buitelaar, P., Cimeano, P., Magnini, F. (eds.): Ontology Learning from Text: Methods, Evaluation and Applications. IOS Press, Amsterdam (2005)

    Google Scholar 

  16. Cimeano, P., Mädche, A., Staab, S., Völker, J.: Ontology learning. In: Staab, S., Studer, R. (eds.) Handbook on Ontologies. Springer, New York (2009)

    Google Scholar 

  17. Lehmann, J., Völker, J. (eds.): Perspectives on Ontology Learning. IOS Press, Amsterdam (2014)

    MATH  Google Scholar 

  18. Cohen, W., Hirsh, H.: The learnability of description logics with equality constraints. Mach. Learn. 17(2–3), 169–199 (1994)

    MATH  Google Scholar 

  19. Lisi, F.A., Straccia, U.: A FOIL-like method for learning under incompleteness and vagueness. In: Zaverucha, G., Santos Costa, V., Paes, A. (eds.) ILP 2013. LNCS, vol. 8812, pp. 123–139. Springer, Heidelberg (2014)

    Google Scholar 

  20. Badea, L., Nienhuys-Cheng, S.-H.: A refinement operator for description logics. In: Cussens, J., Frisch, A.M. (eds.) ILP 2000. LNCS (LNAI), vol. 1866, pp. 40–59. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  21. Lehmann, J., Hitzler, P.: A refinement operator based learning algorithm for the \({\cal {ALC}}\) description logic. In: Blockeel, H., Ramon, J., Shavlik, J., Tadepalli, P. (eds.) ILP 2007. LNCS (LNAI), vol. 4894, pp. 147–160. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  22. Fanizzi, N., d’Amato, C., Esposito, F.: DL-FOIL concept learning in description logics. In: Železný, F., Lavrač, N. (eds.) ILP 2008. LNCS (LNAI), vol. 5194, pp. 107–121. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  23. Cohen, W.W., Hirsh, H.: Learning the classic description logic: Theoretical and experimental results. In: Proceedings of Principles of Knowledge Representation and Reasoning (KR 1994) (1994)

    Google Scholar 

  24. Chitsaz, M., Wang, K., Blumenstein, M., Qi, G.: Concept learning for \({\cal {EL ++}}\) by refinement and reinforcement. In: Anthony, P., Ishizuka, M., Lukose, D. (eds.) PRICAI 2012. LNCS, vol. 7458, pp. 15–26. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  25. Pitt, L.: Inductive inference, DFAs, and computational complexity. In: Jantke, K.P. (ed.) All 1989. LNCS, vol. 397, pp. 18–44. Springer, Heidelberg (1989)

    Chapter  Google Scholar 

  26. Angluin, D.: Queries and concept learning. Mach. Learn. 2(4), 319–342 (1988)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Szymon Klarman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Klarman, S., Britz, K. (2016). Ontology Learning from Interpretations in Lightweight Description Logics. In: Inoue, K., Ohwada, H., Yamamoto, A. (eds) Inductive Logic Programming. ILP 2015. Lecture Notes in Computer Science(), vol 9575. Springer, Cham. https://doi.org/10.1007/978-3-319-40566-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40566-7_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40565-0

  • Online ISBN: 978-3-319-40566-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics