Skip to main content

CARAF: Complex Aggregates within Random Forests

  • Conference paper
  • First Online:
Inductive Logic Programming (ILP 2015)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9575))

Included in the following conference series:

Abstract

This paper presents an approach integrating complex aggregate features into a relational random forest learner to address relational data mining tasks. CARAF, for Complex Aggregates within RAndom Forests, has two goals. Firstly, it aims at avoiding exhaustive exploration of the large feature space induced by the use of complex aggregates. Its second purpose is to reduce the overfitting introduced by the expressivity of complex aggregates in the context of a single decision tree. CARAF compares well on real-world datasets to both random forests based on the propositionalization method RELAGGS, and the relational random forest learner FORF. CARAF allows to perform complex aggregate feature selection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anderson, G., Pfahringer, B.: Relational random forests based on random relational rules. In: Boutilier, C. (ed.) IJCAI 2009, Proceedings of the 21st International Joint Conference on Artificial Intelligence, Pasadena, California, USA, July 11–17, 2009, pp. 986–991 (2009). http://ijcai.org/papers09/Papers/IJCAI09-167.pdf

  2. Blockeel, H., Raedt, L.D.: Top-down induction of first-order logical decision trees. Artif. Intell. 101(1–2), 285–297 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. Boullé, M.: Towards automatic feature construction for supervised classification. In: Calders, T., Esposito, F., Hüllermeier, E., Meo, R. (eds.) ECML PKDD 2014, Part I. LNCS, vol. 8724, pp. 181–196. Springer, Heidelberg (2014). http://dx.doi.org/10.1007/978-3-662-44848-9_12

    Google Scholar 

  4. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001). http://dx.doi.org/10.1023/A:1010933404324

    Article  MathSciNet  MATH  Google Scholar 

  5. Charnay, C., Lachiche, N., Braud, A.: Construction of complex aggregates with random restart hill-climbing. In: Davis, J., et al. (eds.) ILP 2014. LNCS, vol. 9046, pp. 49–61. Springer, Heidelberg (2015). doi:10.1007/978-3-319-23708-4_4

    Chapter  Google Scholar 

  6. Dietterich, T.G., Lathrop, R.H., Lozano-Pérez, T.: Solving the multiple instance problem with axis-parallel rectangles. Artif. Intell. 89(1–2), 31–71 (1997). http://dx.doi.org/10.1016/S0004-3702(96)00034-3

    Article  MATH  Google Scholar 

  7. Dzeroski, S., Schulze-Kremer, S., Heidtke, K.R., Siems, K., Wettschereck, D., Blockeel, H.: Diterpene structure elucidation from 13CNMR spectra with inductive logic programming. Appl. Artif. Intell. 12(5), 363–383 (1998). http://dx.doi.org/10.1080/088395198117686

    Article  Google Scholar 

  8. Hall, M.A., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data mining software: an update. SIGKDD Explor. 11(1), 10–18 (2009). http://doi.acm.org/10.1145/1656274.1656278

    Article  Google Scholar 

  9. Krogel, M.A., Wrobel, S.: Facets of aggregation approaches to propositionalization. In: Horvath, T., Yamamoto, A. (eds.) Work-in-Progress Track at the Thirteenth International Conference on Inductive Logic Programming (ILP) (2003)

    Google Scholar 

  10. Puissant, A., Lachiche, N., Skupinski, G., Braud, A., Perret, J., Mas, A.: Classification et évolution des tissus urbains à partir de données vectorielles. Rev. Int. de Géomatique 21(4), 513–532 (2011)

    Article  Google Scholar 

  11. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann, San Francisco (1993)

    Google Scholar 

  12. Srinivasan, A., Muggleton, S., Sternberg, M.J.E., King, R.D.: Theories for mutagenicity: A study in first-order and feature-based induction. Artif. Intell. 85(1–2), 277–299 (1996). http://dx.doi.org/10.1016/0004-3702(95)00122-0

    Article  Google Scholar 

  13. Van Assche, A., Vens, C., Blockeel, H., Dzeroski, S.: First order random forests: Learning relational classifiers with complex aggregates. Mach. Learn. 64(1–3), 149–182 (2006)

    Article  MATH  Google Scholar 

  14. Vens, C., Ramon, J., Blockeel, H.: Refining aggregate conditions in relational learning. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) PKDD 2006. LNCS (LNAI), vol. 4213, pp. 383–394. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clément Charnay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Charnay, C., Lachiche, N., Braud, A. (2016). CARAF: Complex Aggregates within Random Forests. In: Inoue, K., Ohwada, H., Yamamoto, A. (eds) Inductive Logic Programming. ILP 2015. Lecture Notes in Computer Science(), vol 9575. Springer, Cham. https://doi.org/10.1007/978-3-319-40566-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40566-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40565-0

  • Online ISBN: 978-3-319-40566-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics