Skip to main content

Unconventional Energy Sources

  • Chapter
  • First Online:
Waste Energy for Life Cycle Assessment

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

Unconventional energy sources cover unusually unconventional energy, with little or no unused, inactive cases and the energy resources available waste form. Figure 3.1 shows unconventional energy sources. For example; extra heavy oil, heavy crude oil and no 4–6 fuel oils are unconventional energy sources because they are used in small amounts or for they not use in the production of diesel fuel and/or gasoline. Natural gas hydrate is an example to inactive energy source due to it has not yet been used in the production of methane. Releasing heats from cooking food in a kitchen or from the flue of a cement factory are waste heats, for examples, because they can be used to generate electricity.

Unconventional energy sources

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Attia S, Gratia E, De Herde A, Hensen JL (2012) Simulation-based decision support tool for early stages of zero-energy building design. Energy Build 49:2–15

    Google Scholar 

  • Axelsson H, Harvey S, Asblad A, Berntsson T (2003) Potential for greenhouse gas reduction in industry through increased heat recovery and/or integration of combined heat and power. Appl Therm Eng 23:65–87

    Google Scholar 

  • Bakis R, Turedi N, Demirbas A (2004) Current status of hydropower in the world and Turkey. Energy Edu Sci Technol 12:89–100

    Google Scholar 

  • Balasubramanian S, Bagci C (1978) Design equations for the complete shaking force balancing of 6R 6-bar and 6-bar slider-crank mechanisms. Mech Mach Theor 13:659–674

    Article  Google Scholar 

  • Balat M (2007) Boron as an alternate engine fuel. Energy Sour Part A 29:79–83

    Article  Google Scholar 

  • Balat M, Kirtay E (2010) Major technical barriers to a “Hydrogen economy”. Energy Sourc Part A 32:863–876

    Google Scholar 

  • Bandivadekar A, Cheah L, Evans C, Groode T, Heywood J, Kasseris E, Kromer M, Weiss M (2008) Reducing the fuel use and greenhouse gas emissions of the US vehicle fleet. Energy Policy 36:2754–2760

    Article  Google Scholar 

  • Bastani P, Heywood JB, Hope C (2012) The effect of uncertainty on the US transport-related GHG emissions and fuel consumption out to 2050. Transp Res Part A Policy Pract 46:517–548

    Article  Google Scholar 

  • Beckman G, Gilli PV (1984) Thermal energy storage. Springer, New York

    Google Scholar 

  • Bejan A (1982) Entropy generation through heat and fluid flow, Chapter 8. Wiley, Toronto, pp 158–172

    Google Scholar 

  • Briot S, Arakelian V (2012) Complete shaking force and shaking moment balancing of in-line four-bar linkages by adding a class-two RRR or RRP Assur group. Mech Mach Theor 57:13–26

    Article  Google Scholar 

  • Chalk SG, Miller JF (2006) Key challenges and recent progress in batteries, fuel cells, and hydrogen storage for clean energy systems. J Power Sourc 159:73–80

    Article  Google Scholar 

  • Chang PK (1976) Control of flow separation. Hemisphere Publishing Corporation, Washington

    Google Scholar 

  • Chaudhary H, Saha SK (2008) Balancing of shaking forces and shaking moments for planar mechanisms using the equimomental systems. Mech Mach Theor 43:310–334

    Article  MATH  Google Scholar 

  • Cheah L, Heywood J (2011) Meeting US passenger vehicle fuel economy standards in 2016 and beyond. Energy Policy 39:454–466

    Article  Google Scholar 

  • Cheah L, Heywood J, Kirchain R (2009) Aluminum stock and flows in US passenger vehicles and ımplications for energy use. J Indust Ecol 13:718–734

    Article  Google Scholar 

  • Cheong K, Chung K (2015) Compressor selection criteria. Unicla International Limited, Unit 1209–1210, 12F Manhattan Centre, Hong Kong. www.unicla.hk

  • Collett TS (2002) Energy resource potential of natural gas hydrates. AAPG Bull 86:1971–1992

    Google Scholar 

  • Demirbas A (1998) Dehydration kinetics of colemanite using thermogravimetric data. Energy Edu Sci Technol 1:37–44

    Google Scholar 

  • Demirbas A (2000) Carbonization and characterization of Turkish oil shales. Energy Sour 22:675–682

    Article  Google Scholar 

  • Demirbas A (2001) Biomass resource facilities and biomass conversion processing for fuels and chemicals. Energy Convers Mgmt 42:1357–1378

    Article  Google Scholar 

  • Demirbas A (2002a) Energy utilization systems. Energy Explor Exploit 20:379–390

    Article  Google Scholar 

  • Demirbas A (2002b) Production potential of electricity from biomass in Turkey. Energy Sour 24:921–929

    Article  Google Scholar 

  • Demirbas A (2002c) Energy conservation and storage systems. Energy Explor Exploit 20:391–399

    Article  Google Scholar 

  • Demirbas A (2005a) New opportunities resulting from cogeneration systems based on biomass gasification. Energy Sour 27:941–948

    Article  Google Scholar 

  • Demirbas A (2005b) Hydrogen and boron as recent alternative motor fuels. Energy Sour 27:741–748

    Article  Google Scholar 

  • Demirbas MF (2006a) Thermal energy storage (TES) and phase change materials (PCM): An overview. Energy Sour Part B 1:85–95

    Article  Google Scholar 

  • Demirbas A (2006b) Electricity generation via unconventional methods. Energy Explor Exploit 24:131–138

    Article  Google Scholar 

  • Demirbas A (2007a) Storage and transportation opportunities of hydrogen. Energy Sour Part B 2:287–295

    Article  Google Scholar 

  • Demirbas A (2007b) Focus on the world: status and future of hydropower. Energy Sour Part B 2:237–242

    Article  Google Scholar 

  • Demirbas A (2008a) Biodiesel: a realistic fuel alternative for diesel engines. Springer, London

    Google Scholar 

  • Demirbas A (2008c) Energy from boron and non-nuclear metallic fuels. Energy Sour Part A:1108–1113

    Google Scholar 

  • Demirbas A (2009) Biofuels: securing the planet’s future energy needs. Springer, London

    Book  Google Scholar 

  • Demirbas A (2014) Hydrogen: tomorrow’s energy source. Energy Educ Sci Tech-C 6:109–128

    Google Scholar 

  • Den Hartog JP (1985) Mechanical vibrations. Published by Dover Publications Inc., New York

    MATH  Google Scholar 

  • Dentice d’Accadia M, Sasso M, Sibilio S, Vanoli L (2003) Micro-combined heat and power in residential and light commercial applications. Appl Therm Eng 23:1247–1259

    Google Scholar 

  • Dindorf R (2012) Estimating potential energy savings in compressed air systems. Procedia Eng 39:204–211

    Article  Google Scholar 

  • Dinga GP (1998) Hydrogen: the ultimate fuel and energy carrier. J Chem Educ 65:688–691

    Google Scholar 

  • Dogru M, Howarth CR, Keskinler B, Malik AA (2002) Gasification of hazelnut shells in a dawndraft gasifier. Energy 27:415–427

    Article  Google Scholar 

  • Dresig H, Dien NP (2011) Complete shaking force and shaking moment balancing of mechanisms using a moving rigid body. Techn Mechan 31:121–131

    Google Scholar 

  • Durgun O, Sahin Z (2007) Theoretical investigations of effects of light fuel fumigation on diesel engine performance and emissions. Energy Convers Manage 48:1952–1964

    Article  Google Scholar 

  • EIA (2000) EIA (Energy Information Agency) The report: international energy outlook

    Google Scholar 

  • EWEA (European Wind Energy Association) (2005) Report: large scale integration of wind energy in the European power supply: analysis, issues and recommendations, Paris

    Google Scholar 

  • Forster KJ, White TR (2014) Numerical investigation into vortex generators on heavily cambered wings. AIAA J 52:1059–1071

    Article  Google Scholar 

  • Fridleifsson IB (2001) Geothermal energy for the benefit of the people. Renew Sustain Energy Rev 5:299–312

    Article  Google Scholar 

  • Ganda F, Ngwakwe CC (2014) Role of energy efficiency on sustainable development. Environ Econ 5:86–99

    Google Scholar 

  • Garg HP, Datta G (1998) Global status on renewable energy. Solar energy heating and cooling methods in buildings. International workshop: Iran University of Science and Technology, 19–20 May 1998

    Google Scholar 

  • Ghuniem A, Klein S (1989) The effect of phase change material properties on the performance of solar air-based heating systems. Sol Energy 42:441–447

    Article  Google Scholar 

  • Gleick PH (1999) The world’s water, the biennial report on freshwater resources. Pac Instit Stud Dev Environ Secur, Oakland

    Google Scholar 

  • Gulec M (1999) Pnömatik Sistemlerde Tasarruf. I. Ulusal Hidrolik Pnömatik K, Izmir [in Turkish]

    Google Scholar 

  • Han P, Yue Y, Zhang L, Xu H, Liu Z, Zhang K, Zhang C, Dong S, Ma W, Cui G (2012) Nitrogen-doping of chemically reduced mesocarbon microbead oxide for the improved performance of lithium ion batteries. Carbon 50:1355–1362

    Article  Google Scholar 

  • Hanlon M (2005) (November 13) http://www.gizmag.com/go/4936/. 2011

  • Heywood J (2010) Assessing the fuel consumption and GHG of future In-use vehicles. PEA-AIT

    Google Scholar 

  • Hu C, Youn BD, Chung J (2012) A multiscale framework with extended Kalman filter for lithium-ion battery SOC and capacity estimation. Appl Energy 92:694–704

    Article  Google Scholar 

  • Jansson G, Schade J, Olofsson T (2013) Requirements management for the design of energy efficient buildings. J Inform Technol Const 18:321–337

    Google Scholar 

  • Jean-Baptiste P, Ducroux R (2003) Energy policy and climate change. Energy Policy 31:155–166

    Article  Google Scholar 

  • Kar Y, Sen N, Demirbas A (2006) Boron minerals in Turkey, their application areas and importance for the country’s economy. Miner Energy 3–4:2–10

    Article  Google Scholar 

  • Kaya D, Phelan P, Chau D, Sarac HI (2002) Energy conversion in compressed-air systems. Int J Energy Res 26:837–849

    Article  Google Scholar 

  • Kim JM, Lee G, Kim BH, Huh YS, Lee G-W, Kim HJ (2012) Ultrasoun assisted synthesis of Li-rich mesoporous LiMn2O4 nanospheres for enhancing the electrochemical performance in Li-ion secondary batteries. Ultrason Sonochem 19:627–631

    Article  Google Scholar 

  • Kotay SM, Das D (2008) Biohydrogen as a renewable energy resource—prospects and potentials. Int J Hydrogen Energy 33:258–263

    Article  Google Scholar 

  • Krol J (1947) A critical survey of existing information relating to the automatic hydraulic ram Part I. London

    Google Scholar 

  • Kromer M, Bandivadekar A, Evans C (2010) Long-term greenhouse gas emission and petroleum reduction goals: Evolutionary pathways for the light-duty vehicle sector. Energy 35:387–397

    Article  Google Scholar 

  • Kutz M (ed) (2007) Environmentally conscious alternative energy production. Wiley, Hoboken

    Google Scholar 

  • Kvenvolden K (1993a) Gas hydrates—geological perspective and global change. Rev Geophys 31:173–187

    Article  Google Scholar 

  • Kvenvolden KA (1993b) Gas hydrates as a potential energy resource—a review of their methane content. In: Howell DG (ed) The future of energy gases—US geological survey professional paper 1570. United States Government Printing Office, Washington, pp 555–561

    Google Scholar 

  • Kvenvolden KA (1998) A primer on the geological occurrence of gas hydrate. Geol Soc Lond Spec Publ 137:9–30

    Article  Google Scholar 

  • Kvenvolden KA, Lorenson TD (2000) The global occurrence of natural gas hydrate. In: Paull CK, Dillon WP (eds) Natural gas hydrates: occurrence, distribution, and dynamics. Geophysical monograph 124. American Geophysical Union, Washington, pp 3–18

    Google Scholar 

  • Laughton M (1996) Combined heat and power: executive summary. Appl Energy 53:223–227

    Article  Google Scholar 

  • Lee S-Y, Holder GD (2001) Methane hydrates potential as a future energy source. Fuel Proc Technol 71:181–186

    Article  Google Scholar 

  • Li L, Hurley JA (2007) Ammonia-based hydrogen source for fuel cell applications. Int J Hydrogen Energy 32:6–10

    Article  Google Scholar 

  • Lin JJ (2002) Review of research on low-profile vortex generators to control boundary-layer separation. Prog Aerosp Sci 38:389–420

    Article  Google Scholar 

  • Lipman TE (2004) What will power the hydrogen economy? Present and future sources of hydrogen energy. Analysis and report prepared for the natural resources defense council, Institute of Transportation Studies, Publication No. UCD-ITS-RR-04-10. Davis, CA: University of California

    Google Scholar 

  • Ma X, Bi J, Chen W, Li Z, Jiang T (2013) Research on new compressed air energy storage technology. Energy Power Eng 5:22–25

    Article  Google Scholar 

  • Malmqvist T, Glaumann M, Scarpellini S, Zabalza I, Aranda A, Llera E, Díaz S (2011) Life cycle assessment in buildings: the ENSLIC simplified method and guidelines. Energy 36:1900–1907

    Article  Google Scholar 

  • Maratos DF (2002) Technical feasibility of wavepower for seawater desalination using the hydro ram (Hydram). Desalination 153:287–293

    Article  Google Scholar 

  • Mishra KR, Sugandh G (2014) Study about engine operated by compressed air (C.A.E): a pneumatic power source. IOSR-JMCE 11:99–103

    Google Scholar 

  • Muetterties EL (1967) The chemistry of boron and its compounds. Wiley, New York, pp 1–2, 329

    Google Scholar 

  • Murphy H, Niitsuma H (1999) Strategies for compensating for higher costs of geothermal electricity with environmental benefits. Geothermics 28:693–711

    Article  Google Scholar 

  • Nath K, Das D (2003) Hydrogen from biomass. Current Sci 85:265–271

    Google Scholar 

  • Nehemiah P, Sundara Siva Rao BSK, Ramji K (2012) Shaking force and shaking moment balancing of planar mechanisms with high degree of complexity. Jordan J Mech Ind Eng 6:17–24

    Google Scholar 

  • Norman K (2007) Interim report: feasibility of microscale glucose reforming for renewable hydrogen. SANDIA report no. SAND2007-1713. New Mexico, California: Sandia National Laboratories

    Google Scholar 

  • Novak P, Moffat AIB, Nalluri C, Narayanan R (1996) Hydraulic structures, 2nd edn. E&FN Spon, an imprint of Champman & Hall, London

    Google Scholar 

  • OECD/IEA (2003) Organisation for Economic Co-operation and Development/International Energy Agency (OECD/IEA). Renewables for power generation: status and prospects. 2, rue André- Pascal, 75775 Paris Cedex 16, France or 9, rue de la Fédération, 75739 Paris Cedex 15, France

    Google Scholar 

  • Ozturk T, Demirbas A (2006) Electricity generation using water lifting force. Energy Explor Exploit 24:285–296

    Article  Google Scholar 

  • Penche C (1998) Layman’s guidebook on how to develop a small hydro site. ESHA, European small hydropower Association, Directorate General for Energy (DG XVII)

    Google Scholar 

  • Rachel G (2010) 2009 renewable energy data book. US Department of Energy, Washington

    Google Scholar 

  • Reijnders L (2006) Conditions for the sustainability of biomass based fuel use. Energy Policy 34:863–876

    Article  Google Scholar 

  • Romas H, De Almedia AB (1999) Small hydropower schemes as an important renewable energy sources. Hidroenergia 99, 1–13 Oct, Vienna, Australia

    Google Scholar 

  • Rosa LP (2001) Rio GHG working group report. International workshop on hydro reservoirs and greenhouse gas emissions, COPPE/UFRJ, January

    Google Scholar 

  • Rosen MA (1999) Second-law analysis of aquifer thermal energy storage systems. Energy 24:167–182

    Article  Google Scholar 

  • Saidur R, Rahim NA, Hasanuzzaman M (2010) A review on compressed-air energy use and energy savings. Renew Sustain Energy Rev 14:1135–1153

    Article  Google Scholar 

  • Saidur R, Mekhilef S, Ali MB, Safari A, Mohammed HA (2012) Applications of variable speed drive (VSD) in electrical motors energy savings. Renew Sustain Energy Rev 16:543–550

    Article  Google Scholar 

  • Sapmaz S, Kilic FC, Eyidogan M, Taylan O, Coban V, Cagman S et al (2015) Selection of compressors for petrochemical industry in terms of reliability, energy consumption and maintenance costs examining different scenarios. Energy Explor Exploit 33:43–62

    Article  Google Scholar 

  • Satoh M, Maekawa T, Okuda Y (1996) Estimation of amount of methane and resources of gas hydrates in the world and around Japan. J Geol Soc Jpn 102:959–971

    Article  Google Scholar 

  • Schweber L, Leiringer R (2012) Beyond the technical: a snapshot of energy and buildings research. Build Res Inform 40:481–492

    Article  Google Scholar 

  • Sen N, Demir C, Demirbas A, Kar Y (2009) Obtaining of boron as an alternative fuel from borax. Energy Sour Part A 31:509–515

    Article  Google Scholar 

  • Silveira JL, Silva Walter AC, Luengo CA (1997) A case study of compact co-generation using various fuels. Fuel 76:447–451

    Article  Google Scholar 

  • Smits AJ (2014) A physical introduction to fluid mechanics, 2nd edn. Princeton University, Copyright A. J. Smits

    Google Scholar 

  • Socaciu LG (2012) Thermal energy storage with phase change material. Leon Elect J Pract Technol 20:75–98

    Google Scholar 

  • Sorensen HA (1983) Energy conversion systems. Wiley, New York

    Google Scholar 

  • Stamp A, Lang DJ, Wäger PA (2012) Environmental impacts of a transition toward e-mobility: the present and future role of lithium carbonate production. J Clean Prod 23:104–112

    Article  Google Scholar 

  • Taylan O, Kaya D, Demirbas A (2016) An integrated multi attribute decision model for energy efficiency processes in petrochemical industry applying fuzzy set theory. Energy Convers Manage 117:501–512

    Article  Google Scholar 

  • Tessema AA (2000) Hydraulic ram pump system design and application. In: ESME 5th annual conference on manufacturing and process industry, September

    Google Scholar 

  • T-Raissi A, Block DL (2004) Hydrogen: automotive fuel of the future. Power Energy Mag IEEE 2:40–45

    Google Scholar 

  • Tucker JD, Masri B, Lee S (2000) A comparison of retorting and supercritical extraction techniques on El-Lajjun oil shale. Energy Sour 22:453–463

    Article  Google Scholar 

  • Uslu T (2009) Potential use of boron for energy production and storage. Energy Sour Part A 31:610–618

    Article  Google Scholar 

  • Veziroglu T (1975) Hydrogen energy, Part B. Plenum, New York

    Book  Google Scholar 

  • WCD (2000) World Commission on Dams (WCD), dams and development: a new framework for decision-making. Earthscan Publications Ltd., London

    Google Scholar 

  • WEC (2001) World Energy Council (WEC). Survey of energy sources. Wikipedia. 2011. From Wikipedia, the free encyclopedia. http://en.wikipedia.org/wiki/Regenerative_braking

  • Williamson K Jr, Edeskuty F (1986) Recent developments in hydrogen technology. Vol I-II, CRC: Boca Raton

    Google Scholar 

  • Wu YJ, Rosen A (1999) Assessing and optimizing the economic and environmental impacts of cogeneration/district energy systems using an energy equilibrium model. Appl Energy 62:141–154

    Google Scholar 

  • Yang M (2009) Air compressor efficiency in a Vietnamese enterprise. Energy Policy 37:2327–2337

    Article  Google Scholar 

  • Yazici N, Demirbas A (2001) Turkey’s natural gas necessity and consumption. Energy Sour 23:801–808

    Article  Google Scholar 

  • Young BW (1995) Design of hydraulic ram pump systems. Proc Instit Mechan Eng Part AJ Power Energy 209:313–322

    Article  Google Scholar 

  • Young BW (1996) Generic design of ram pumps. Proc Instit Mechan Eng Part AJ Power Energy 212:117–124

    Article  Google Scholar 

  • Zhou Y, Jo C, Lee J, Lee CW, Qao G, Yoon S (2012) Development of novelmesoporous C-TiO2– SnO2 nanocomposites and their application to anode materials in lithium ion secondary batteries. Micropor Mesopor Mater 151:172–179

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayhan Demirbas .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Demirbas, A. (2016). Unconventional Energy Sources. In: Waste Energy for Life Cycle Assessment. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-40551-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40551-3_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40550-6

  • Online ISBN: 978-3-319-40551-3

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics