Skip to main content

Partitioned Fluid–Structure–Acoustics Interaction on Distributed Data: Coupling via preCICE

  • Conference paper
  • First Online:
Book cover Software for Exascale Computing - SPPEXA 2013-2015

Abstract

One of the great prospects of exascale computing is to simulate challenging highly complex multi-physics scenarios with different length and time scales. A modular approach re-using existing software for the single-physics model parts has great advantages regarding flexibility and software development costs. At the same time, it poses challenges in terms of numerical stability and parallel scalability. The coupling library preCICE provides communication, data mapping, and coupling numerics for surface-coupled multi-physics applications in a highly modular way. We recapitulate the numerical methods but focus particularly on their parallel implementation. The numerical results for an artificial coupling interface show a very small runtime of the coupling compared to typical solver runtimes and a good parallel scalability on a number of cores corresponding to a massively parallel simulation for an actual, coupled simulation. Further results for actual application scenarios from the field of fluid–structure–acoustic interactions are presented in the next chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    preCICE is licensed under LGPL3.

  2. 2.

    www.precice.org

  3. 3.

    www.boost.org

  4. 4.

    We always refer to the number of processors per participant.

  5. 5.

    For more details: https://www.lrz.de/services/compute/supermuc/systemdescription/.

  6. 6.

    Optimizations of the memory requirements of IMVJ and RBF are possible and work in progress.

References

  1. Anderson, D.G.: Iterative procedures for nonlinear integral equations. J. ACM 12 (4), 547–560 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  2. Balay, S., Abhyankar, S., Adams, M.F., Brown, J., Brune, P., Buschelman, K., Dalcin, L., Eijkhout, V., Gropp, W.D., Kaushik, D., Knepley, M.G., McInnes, L.C., Rupp, K., Smith, B.F., Zampini, S., Zhang, H.: PETSc users manual. Tech. Rep. ANL-95/11 - Revision 3.6, Argonne National Laboratory (2015). http://www.mcs.anl.gov/petsc

  3. de Boer, A., van Zuijlen, A., Bijl, H.: Comparison of conservative and consistent approaches for the coupling of non-matching meshes. Comput. Method. Appl. Mech. Eng. 197 (49–50), 4284–4297 (2008).

    Google Scholar 

  4. Buhmann, M.: Radial basis functions. Acta Numer. 9 (January 2000), 1–38 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bungartz, H.J., Lindner, F., Gatzhammer, B., Mehl, M., Scheufele, K., Shukaev, A., Uekermann, B.: preCICE – a fully parallel library for multi-physics surface coupling. Comput. Fliuds (2016)

    Google Scholar 

  6. Bungartz, H.J., Lindner, F., Mehl, M., Uekermann, B.: A plug-and-play coupling approach for parallel multi-field simulations. Comput. Mech. 55 (6), 1119–1129 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Deparis, S., Forti, D., Quarteroni, A.: A rescaled localized radial basis function interpolation on non-cartesian and nonconforming grids. SIAM J. Sci. Comput. 36 (6), A2745–A2762 (2014). http://dx.doi.org/10.1137/130947179

    Article  MathSciNet  MATH  Google Scholar 

  8. Fang, H.R., Saad, Y.: Two classes of multisecant methods for nonlinear acceleration. Numer. Linear Algebra 16, 197–221 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gatzhammer, B.: Efficient and flexible partitioned simulation of fluid-structure interactions. Phd thesis, Technische Universität München (2014)

    Google Scholar 

  10. Keyes, D., McInnes, L.C., Woodward, C.S., Gropp, W., Myra, E., Pernice, M., Bell, J., Brown, J., Clo, A., Connors, J., Constantinescu, E., Estep, D., Evans, K., Farhat, C., Hakim, A., Hammond, G., Hansen, G., Hill, J., Isaac, T., Jiao, X., Jordan, K., Kaushik, D., Kaxiras, E., Koniges, A., Lee, K., Lott, A., Lu, Q., Magerlein, J., Maxwell, R., McCourt, M., Mehl, M., Pawloski, R., Randles, A., Reynolds, D., Riviere, B., Rüde, U., Scheibe, T., Shadid, J., Sheehan, B., Shephard, M., Siegel, A., Smith, B., Tang, X., Wilson, C., Wohlmuth, B.: Multiphysics simulations: challenges and opportunities. Int. J. High Perform. Comput. Appl. 27 (1), 4–83 (2012)

    Google Scholar 

  11. Lindner, F., Mehl, M., Scheufele, K., Uekermann, B.: A comparison of various quasi-Newton schemes for partitioned fluid-structure interaction. In: Proceedings of 6th International Conference on Computational Methods for Coupled Problems in Science and Engineering, Venice, pp. 1–12 (2015)

    Google Scholar 

  12. Loffeld, J., Woodward, C.: Considerations and the implementation and use of Anderson acceleration on parallel computers. In: Advances in the Mathematical Sciences: Research from the 2015 Association for Women in Mathematics Symposium. AWM Springer Series (2016)

    Google Scholar 

  13. Plimpton, S.J., Hendrickson, B., Stewart, J.R.: A parallel rendezvous algorithm for interpolation between multiple grids. J. Parallel Distrib. Comput. 64 (2), 266–276 (2004)

    Article  MATH  Google Scholar 

  14. Shukaev, A.K.: A fully parallel process-to-process intercommunication technique for preCICE. Master’s thesis, Institut für Informatik, Technische Universität München (2015)

    Google Scholar 

  15. Slattery, S., Wilson, P., Pawlowski, R.: The data transfer kit: a geometric rendezvous-based tool for multiphysics data transfer. In: International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering (M&C 2013), pp. 5–9 (2013)

    Google Scholar 

  16. Smith, M.J., Cesnik, C.E.S., Hodges, D.H.: Evaluation of algorithms suitable for data transfer between noncontiguous meshes. J. Aerospace Eng. 13 (2), 52–58 (2000)

    Article  Google Scholar 

  17. Uekermann, B., Bungartz, H.J., Gatzhammer, B., Mehl, M.: A parallel, black-box coupling for fluid-structure interaction. In: Idelsohn, S., Papadrakakis, M., Schrefler, B. (eds.) Computational Methods for Coupled Problems in Science and Engineering, COUPLED PROBLEMS 2013. Stanta Eulalia, Ibiza (2013). http://congress.cimne.com/coupled2013/proceedings/full/p559.pdf

    Google Scholar 

  18. Vierendeels, J., Degroote, J., Annerel, S., Haelterman, R.: Stability issues in partitioned FSI calculations. In: Bungartz, H.J., Mehl, M., Schäfer, M. (eds.) Fluid Structure Interaction II. Lecture Notes in Computational Science and Engineering, pp. 83–102. Springer, Berlin/Heidelberg (2010). http://link.springer.com/chapter/10.1007/978-3-642-14206-2_4

    Google Scholar 

  19. Walker, H.F., Ni, P.: Anderson acceleration for fixed-point iterations. SIAM J. Numer. Anal. 49 (4), 1715–1735 (Aug 2011). http://dx.doi.org/10.1137/10078356X

    Google Scholar 

  20. Yokota, R., Barba, L.A., Knepley, M.G.: PetRBF – a parallel O(N) algorithm for radial basis function interpolation with Gaussians. Comput. Method. Appl. Mech. Eng. 199 (25–28), 1793–1804 (2010).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The financial support of the priority program 1648 Software for Exascale Computing (www.sppexa.de) of the German Research Foundation and of the Institute for Advanced Study (www.tum-ias.de) of the Technical University of Munich as well as provided computing time on the SuperMUC at the Leibniz Supercomputing Centre, are thankfully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Uekermann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Bungartz, HJ., Lindner, F., Mehl, M., Scheufele, K., Shukaev, A., Uekermann, B. (2016). Partitioned Fluid–Structure–Acoustics Interaction on Distributed Data: Coupling via preCICE. In: Bungartz, HJ., Neumann, P., Nagel, W. (eds) Software for Exascale Computing - SPPEXA 2013-2015. Lecture Notes in Computational Science and Engineering, vol 113. Springer, Cham. https://doi.org/10.1007/978-3-319-40528-5_11

Download citation

Publish with us

Policies and ethics