Integrated Traffic Flow Models and Analysis for Automated Vehicles

  • Bart van Arem
  • Montasir M. Abbas
  • Xiaopeng Li
  • Larry Head
  • Xuesong Zhou
  • Danjue ChenEmail author
  • Robert Bertini
  • Stephen P. Mattingly
  • Haizhong Wang
  • Gabor Orosz
Part of the Lecture Notes in Mobility book series (LNMOB)


With the emergence of connected and automated vehicle (CAV) technologies, research on traffic flow modeling and analysis will play a very important role in improving our understanding of the fundamental characteristics of traffic flow. The frontier of studies on CAV systems have examined the impacts of CAVs on freeway bottleneck capacity, and macroscopic traffic flow, CAV applications on optimization of individual vehicle trajectories, potentials of CAV in traffic signal control, and applications of CAV in network routing. For current and future research initiatives, the greatest challenge lies in the potential inconsistencies between user, operator, and manufacturer goals. Specific research needs were identified on data collection and analysis on CAV behavior and applications. This paper summarizes the presentations and discussions during the Automated Vehicles Symposium 2015 (AVS15) held in Ypsilanti, Michigan, on July 20–23, 2015.


Traffic flow model CAV behavior Data collection Research needs 


  1. 1.
    Transportation Research Board, Highway Capacity Manual 2010, Transportation Research Board, 2010Google Scholar
  2. 2.
    Shladover SE, Su D, Lu X (2012) Highway capacity increases from cooperative adaptive cruise control. In: Proceeding of ITS World Congress, 2012Google Scholar
  3. 3.
    Hoogendoorn SP, Bertini R (2012) Can we control traffic? Instilling a proactive traffic management culture. Delft University of Technology, Essencia The HagueGoogle Scholar
  4. 4.
    van Driel CJG, van Arem B (2010) The impacts of a congestion assistant on traffic flow efficiency and safety in congested traffic caused by a lane drop. J Intell Transp Syst 14(4):197–208CrossRefGoogle Scholar
  5. 5.
    van Arem B, van Driel CJG, Visser R (2006) The impact of cooperative adaptive cruise control on traffic-flow characteristics. IEEE Trans Intell Transp Syst 7(4):429–436CrossRefGoogle Scholar
  6. 6.
    Hoogendoorn RG, van Arem B, Hoogendoorn SP (2014) Automated driving, traffic flow efficient and human factors: literature review. J Transp Res Board (2422), Washington, D.C., pp 113–120Google Scholar
  7. 7.
    Xiao X, Wang M, van Arem B (2015) String strategies of cooperative adaptive cruise control (CACC) vehicles for high-performance streams. Poster presented at automated vehicle symposium 2015. Ann Arbor, MichiganGoogle Scholar
  8. 8.
    Greenshields B, Channing W, Miller H (1935) A study of traffic capacity. In: Highway Research Board Proceedings, National Research Council (USA)Google Scholar
  9. 9.
    Geroliminis N, Daganzo CF (2008) Existence of urban-scale macroscopic fundamental diagrams: Some experimental findings. Transp Res Part B: Method 42(9):759–770Google Scholar
  10. 10.
    Daganzo CF, Geroliminis N (2008) An analytical approximation for the macroscopic fundamental diagram of urban traffic. Transp Res Part B: Method 42(9):771–781CrossRefGoogle Scholar
  11. 11.
    Geroliminis N, Sun J (2011) Properties of a well-defined macroscopic fundamental diagram for urban traffic. Transp Res Part B: Method 45(3):605–617CrossRefGoogle Scholar
  12. 12.
    Mazloumian A, Geroliminis N, Helbing D (2010) The spatial variability of vehicle densities as determinant of urban network capacity. Philos Trans Roy Soc London A: Math Phys Eng Sci 368(1928):4627–4647MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    VISSIM 5.40–01 - User Manual. Planung Transport Verkehr AG, 2011Google Scholar
  14. 14.
    Zhou F, Li X, Ma J Parsimonious shooting heuristic for trajectory control of connected automated traffic part I: Theoretical analysis with generalized time geography.

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Bart van Arem
    • 1
  • Montasir M. Abbas
    • 2
  • Xiaopeng Li
    • 3
  • Larry Head
    • 4
  • Xuesong Zhou
    • 5
  • Danjue Chen
    • 6
    Email author
  • Robert Bertini
    • 7
  • Stephen P. Mattingly
    • 8
  • Haizhong Wang
    • 9
  • Gabor Orosz
    • 10
  1. 1.Delft University of TechnologyDelftThe Netherlands
  2. 2.Virginia Polytechnic Institute and State UniversityBlacksburgUSA
  3. 3.University of South FloridaTampaUSA
  4. 4.The University of ArizonaTucsonUSA
  5. 5.Arizona State UniversityTempeUSA
  6. 6.University of Wisconsin-MadisonMadisonUSA
  7. 7.California Polytechnic State University San Luis ObispoSan Luis ObispoUSA
  8. 8.University of Texas at ArlingtonArlingtonUSA
  9. 9.Oregon State UniversityCorvallisUSA
  10. 10.G034 AutolabUniversity of MichiganAnn ArborUSA

Personalised recommendations