Skip to main content

Importance of Polyunsaturated Fatty Acids from Marine Algae

  • Chapter
  • First Online:
Omega-3 Fatty Acids

Abstract

Marine algae are non-vascular photoautotrophic organisms containing chlorophyll. They are the primary producers in marine food webs and responsible for the maintenance of life in many ecosystems. Algae are able to produce a wide range of active metabolites, many of which are of great importance to human health, such as the highly valued omega-3 eicosapentaenoic and docosahexaenoic acids (EPA and DHA). There is an increasing demand of these fatty acids, and new sources from algae are been investigated. As presented in this chapter, algae offer great potential and different biotechnological approaches have been developed for boosting fatty acid yields in microalgae. Many industrial exploitation examples exist and more will follow. Thus, in future decades with the scientific advances to come, marine algae will surely become an important, attractive, continuous, and sustainable omega-3 source, to thus satisfy the increasing world demand for these compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Qin S, Lin HZ, Jiang P. Advances in genetic engineering of marine algae. Biotechnol Adv. 2012;30(6):1602–13.

    Article  CAS  PubMed  Google Scholar 

  2. Falkowski PG, Barber RT, Smetacek V. Biogeochemical controls and feedbacks on ocean primary production. Science. 1998;281(5374):200–6.

    Article  CAS  PubMed  Google Scholar 

  3. Apt KE, Behrens PW. Commercial developments in microalgal biotechnology. J Phycol. 1999;35(2):215–26.

    Article  Google Scholar 

  4. Chisti Y. Biodiesel from microalgae. Biotechnol Adv. 2007;25(3):294–306.

    Article  CAS  PubMed  Google Scholar 

  5. Ahmed F, Fanning K, Netzel M, Turner W, Li Y, Schenk PM. Profiling of carotenoids and antioxidant capacity of microalgae from subtropical coastal and brackish waters. Food Chem. 2014;165:300–6.

    Article  CAS  PubMed  Google Scholar 

  6. Skulberg OM. Microalgae as a source of bioactive molecules—experience from cyanophyte research. J Appl Phycol. 2000;12(3–5):341–8.

    Article  CAS  Google Scholar 

  7. Simopoulos AP. The importance of the omega-6/omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases. Exp Biol Med. 2008;233(6):674–88.

    Article  CAS  Google Scholar 

  8. Simopoulos AP. Omega 3-fatty acids in health and disease and in growth and development. Am J Clin Nutr. 1991;54(3):438–63.

    CAS  PubMed  Google Scholar 

  9. FAO. The State of World Fisheries and Aquaculture. 2010.

    Google Scholar 

  10. Adarme-Vega TC, Thomas-Hall SR, Schenk PM. Towards sustainable sources for omega-3 fatty acids production. Curr Opin Biotechnol. 2014;26:14–8.

    Article  CAS  PubMed  Google Scholar 

  11. Spolaore P, Joannis-Cassan C, Duran E, Isambert A. Commercial applications of microalgae. J Biosci Bioeng. 2006;101(2):87–96.

    Article  CAS  PubMed  Google Scholar 

  12. Peter Castro MEH. Marine biology. New York: McGraw-Hill Science/Engineering/Math; 2012.

    Google Scholar 

  13. Hedgpeth JW. Classification of marine environments. Geol Soc Am Memoirs. 1957;67:12.

    Google Scholar 

  14. Fenchel T. The microbial loop-25 years later. J Exp Mar Biol Ecol. 2008;366(1–2):99–103.

    Article  Google Scholar 

  15. Boyce DG, Lewis MR, Worm B. Global phytoplankton decline over the past century. Nature. 2010;466(7306):591–6.

    Article  CAS  PubMed  Google Scholar 

  16. Ausubel JH, Trew Crist D, Waggoner PE. First census of marine life 2010. Highlights of a decade of discovery. Washington, USA: Census of Marine Life; 2010.

    Google Scholar 

  17. Barsanti LGP. Algae: anatomy, biochemistry, and biotechnology. UK: CRC Press, Taylor & Francis Group, LLC; 2006.

    Google Scholar 

  18. Rogers K. Fungi, algae, and protists. 1st ed. USA: Britannica Educational Publishing; 2011.

    Google Scholar 

  19. Yool A, Tyrrell T. Role of diatoms in regulating the ocean’s silicon cycle. Glob Biogeochem Cycle. 2003;17(4):21.

    Article  CAS  Google Scholar 

  20. Berner RA. Atmospheric oxygen over phanerozoic time. Proc Natl Acad Sci USA. 1999;96(20):10955–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kenrick P, Crane PR. The origin and early evolution of plants on land. Nature. 1997;389(6646):33–9.

    Article  CAS  Google Scholar 

  22. Wodniok S, Brinkmann H, Glockner G, Heidel AJ, Philippe H, Melkonian M, et al. Origin of land plants: do conjugating green algae hold the key? BMC Evol Biol. 2011;11:10.

    Article  Google Scholar 

  23. Harwood JL. Recent advances in the biochemistry of plant fatty acids. Biochim Biophys Acta. 1996;1301:7–56.

    Article  PubMed  Google Scholar 

  24. Alonso DL, Maroto FG. Plants as ‘chemical factories’ for the production of polyunsaturated fatty acids. Biotechnol Adv. 2000;18(6):481–97.

    Article  CAS  PubMed  Google Scholar 

  25. Guil-Guerrero JL. Stearidonic acid (18: 4n–3): metabolism, nutritional importance, medical uses and natural sources. Eur J Lipid Sci Technol. 2007;109(12):1226–36.

    Article  CAS  Google Scholar 

  26. Haslam RP, Ruiz-Lopez N, Eastmond P, Moloney M, Sayanova O, Napier JA. The modification of plant oil composition via metabolic engineering-better nutrition by design. Plant Biotechnol J. 2013;11(2):157–68.

    Article  CAS  PubMed  Google Scholar 

  27. Bhardwaj HL, Hamama AA. Oil, erucic acid, and glucosinolate contents in winter hardy rapeseed germplasms. Ind Crop Prod. 2000;12(1):33–8.

    Article  CAS  Google Scholar 

  28. Federica Zanetti TV. Stefano Bona, Giuliano Mosca Can we “cultivate” erucic acid in southern Europe? Ital J Agron. 2006;1(1):3–10.

    Article  Google Scholar 

  29. Cequier-Sanchez E, Rodriguez C, Dorta-Guerra R, Ravelo AG, Zarate R. Echium acanthocarpum hairy root cultures, a suitable system for polyunsaturated fatty acid studies and production. BMC Biotechnol. 2011;11:14.

    Article  CAS  Google Scholar 

  30. Guil-Guerrero JL, Garcia-Maroto F, Campra-Madrid P, Gomez-Mercado F. Occurrence and characterization of oils rich in gamma-linolenic acid part II: fatty acids and squalene from Macaronesian echium leaves. Phytochemistry. 2000;54(5):525–9.

    Article  CAS  PubMed  Google Scholar 

  31. Guil-Guerrero JL, Garcia-Maroto F, Vilches-Ferron MA, Lopez-Alonso D. Gamma-linolenic acid from fourteen boraginaceae species. Ind Crop Prod. 2003;18(1):85–9.

    Article  CAS  Google Scholar 

  32. Guil-Guerrero JL, Gomez-Mercado F, Garcia-Maroto F, Campra-Madrid P. Occurrence and characterization of oils rich in gamma-linolenic acid—part I: Echium seeds from Macaronesia. Phytochemistry. 2000;53(4):451–6.

    Article  CAS  PubMed  Google Scholar 

  33. Guil-Guerrero JL, Gomez-Mercado F, Rodriguez-Garcia I, Campra-Madrid P, Garcia-Maroto F. Occurrence and characterization of oils rich in gamma-linolenic acid (III): the taxonomical value of the fatty acids in Echium (Boraginaceae). Phytochemistry. 2001;58(1):117–20.

    Article  CAS  PubMed  Google Scholar 

  34. Guil-Guerrero JL, Maroto FFG, Gimenez AG. Fatty acid profiles from forty-nine plant species that are potential new sources of gamma-linolenic acid. J Am Oil Chem Soc. 2001;78(7):677–84.

    Article  CAS  Google Scholar 

  35. Muuse BG, Essers ML, Vansoest LJM. Oenothera species and Borago officinalis—sources of gamma linolenic acid. Neth J Agric Sci. 1988;36(4):357–63.

    CAS  Google Scholar 

  36. Sayanova O, Napier JA, Shewry PR. Delta(6)-unsaturated fatty acids in species and tissues of the Primulaceae. Phytochemistry. 1999;52(3):419–22.

    Article  CAS  Google Scholar 

  37. Murphy DJ. Manipulation of lipid metabolism in transgenic plants—biotechnological goals and biochemical realities. Biochem Soc Trans. 1994;22(4):926–31.

    Article  CAS  PubMed  Google Scholar 

  38. Sayanova OV, Napier JA. Eicosapentaenoic acid: biosynthetic routes and the potential for synthesis in transgenic plants. Phytochemistry. 2004;65(2):147–58.

    Article  CAS  PubMed  Google Scholar 

  39. Somerville C, Browse J. Plants lipids—metabolism, mutants and membranes. Science. 1991;252(5002):80–7.

    Article  CAS  PubMed  Google Scholar 

  40. Somerville C, Browse J. Dissecting desaturation: plants prove advantageous. Trends Cell Biol. 1996;6(4):148–53.

    Article  CAS  PubMed  Google Scholar 

  41. Voss A, Reinhart M, Sankarappa S, Sprecher H. The metabolism of 7,10,13,16,19-docosapentanoic acid to 4,7,10,13,16,19-docosahexanoic acid in rat liver is independent of a delta4 desaturase. J Biol Chem. 1991;266(30):19995–20000.

    CAS  PubMed  Google Scholar 

  42. Sprecher H. An update on the pathways of polyunsaturated fatty acid metabolism. Curr Opin Clinic Nutri Metab Care. 1999;2(2):135–8.

    Article  CAS  Google Scholar 

  43. Sprecher H, Chen Q, Yin FQ. Regulation of the biosynthesis of 22: 5n–6 and 22: 6n–3: a complex intracellular process. Lipids. 1999;34:S153–6.

    Article  CAS  PubMed  Google Scholar 

  44. Buzzi M, Henderson RJ, Sargent JR. The desaturation and elongation of linolenic acid and eicosapentaenoic acid by hepatocytes and liver microsomes from rainbow trout (Oncorhynchus mykiss) fed diets containing fish oil or olive oil. Biochim Biophys Acta-Lipids Lipid Metab. 1996;1299(2):235–44.

    Article  Google Scholar 

  45. Buzzi M, Henderson RJ, Sargent JR. Biosynthesis of docosahexaenoic acid in trout hepatocytes proceeds via 24-carbon intermediates. Comp Biochem Physiol B-Biochem Mol Biol. 1997;116(2):263–7.

    Article  CAS  PubMed  Google Scholar 

  46. Rodriguez C, Henderson RJ, Porter AEA, Dick JR. Modification of odd-chain length unsaturated fatty acids by hepatocytes of rainbow trout (Oncorhynchus mykiss) fed diets containing fish oil or olive oil. Lipids. 1997;32(6):611–9.

    Article  CAS  PubMed  Google Scholar 

  47. Sayanova O, Haslam R, Guschina I, Lloyd D, Christie WW, Harwood JL, et al. A bifunctional Delta 12, Delta 15-desaturase from Acanthamoeba castellanii directs the synthesis of highly unusual n-1 series unsaturated fatty acids. J Biol Chem. 2006;281(48):36533–41.

    Article  CAS  PubMed  Google Scholar 

  48. Venegas-Caleron M, Beaudoin F, Sayanova O, Napier JA. Co-transcribed genes for long chain polyunsaturated fatty acid biosynthesis in the protozoon Perkinsus marinus include a plant-like FAE1 3-ketoacyl coenzyme A synthase. J Biol Chem. 2007;282(5):2996–3003.

    Article  CAS  PubMed  Google Scholar 

  49. Napier JA, Graham IA. Tailoring plant lipid composition: designer oilseeds come of age. Curr Opin Plant Biol. 2010;13(3):330–7.

    Article  CAS  PubMed  Google Scholar 

  50. Rogalski M, Carrer H. Engineering plastid fatty acid biosynthesis to improve food quality and biofuel production in higher plants. Plant Biotechnol J. 2011;9(5):554–64.

    Article  CAS  PubMed  Google Scholar 

  51. Sayanova O, Napier JA. Transgenic oilseed crops as an alternative to fish oils. Prostaglandins Leukot Essent Fatty Acids. 2011;85(5):253–60.

    Article  CAS  PubMed  Google Scholar 

  52. Ruiz-Lopez N, Haslam RP, Napier JA, Sayanova O. Successful high-level accumulation of fish oil omega-3 long-chain polyunsaturated fatty acids in a transgenic oilseed crop. Plant J. 2014;77(2):198–208.

    Article  CAS  PubMed  Google Scholar 

  53. Petrie JR, Shrestha P, Belide S, Kennedy Y, Lester G. Metabolic Engineering Camelina sativa with fish oil-like levels of DHA. PLoS ONE. 2014;9(4):1 (e85061).

    Google Scholar 

  54. Commission CA. Understanding the codex alimentarius. Rome: WHO, FAO; 2006.

    Google Scholar 

  55. http://www.fda.gov/AboutFDA/CentersOffices/default.htm.

  56. Enzing C, Ploeg M, Barbosa M, Sijtsma L, Vigani M, Parisi C, et al. Microalgae-based products for the food and feed sector: an outlook for Europe. Publications Office; 2014.

    Google Scholar 

  57. McHugh DJ. A guide to the seaweed industry:. Food and Agriculture Organization of the United Nations Rome; 2003.

    Google Scholar 

  58. Khozin-Goldberg I, Iskandarov U, Cohen Z. LC-PUFA from photosynthetic microalgae: occurrence, biosynthesis, and prospects in biotechnology. Appl Microbiol Biotechnol. 2011;91(4):905–15.

    Article  CAS  PubMed  Google Scholar 

  59. Bhatnagar I, Kim SK. Immense essence of excellence: marine microbial bioactive compounds. Mar Drugs. 2010;8(10):2673–701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Milledge JJ. Commercial application of microalgae other than as biofuels: a brief review. Rev Environ Sci Biotechnol. 2011;10(1):31–41.

    Article  Google Scholar 

  61. Mimouni V, Ulmann L, Pasquet V, Mathieu M, Picot L, Bougaran G, et al. the potential of microalgae for the production of bioactive molecules of pharmaceutical interest. Curr Pharm Biotechnol. 2012;13(15):2733–50.

    Article  CAS  PubMed  Google Scholar 

  62. Doughman SD, Krupanidhi S, Sanjeevi CB. Omega-3 fatty acids for nutrition and medicine: considering microalgae oil as a vegetarian source of EPA and DHA. Curr Diabetes Rev. 2007;3(3):198–203.

    Article  CAS  PubMed  Google Scholar 

  63. Hu HH, Gao KS. Response of growth and fatty acid compositions of Nannochloropsis sp to environmental factors under elevated CO2 concentration. Biotechnol Lett. 2006;28(13):987–92.

    Article  CAS  PubMed  Google Scholar 

  64. Gog A, Senila L, Roman M, Luca E, Roman C, Irimie FD. Oil extraction and fatty acid characterization of Nannochloropsis oculata microalgae for biodiesel applications. Stud Univ Babes-Bolyai Chem. 2012;57(1):111–8.

    CAS  Google Scholar 

  65. Martins DA, Custodio L, Barreira L, Pereira H, Ben-Hamadou R, Varela J, et al. Alternative sources of n-3 long-chain polyunsaturated fatty acids in marine microalgae. Mar Drugs. 2013;11(7):2259–81.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Krienitz L, Wirth M. The high content of polyunsaturated fatty acids in Nannochloropsis limnetica (Eustigmatophyceae) and its implication for food web interactions, freshwater aquaculture and biotechnology. Limnologica. 2006;36(3):204–10.

    Article  CAS  Google Scholar 

  67. Fajardo AR, Cerdan LE, Medina AR, Fernandez FGA, Moreno PAG, Grima EM. Lipid extraction from the microalga Phaeodactylum tricornutum. Eur J Lipid Sci Technol. 2007;109(2):120–6.

    Article  CAS  Google Scholar 

  68. Sevilla JMF, Garcia MCC, Miron AS, Belarbi E, Camacho FG, Grima EM. Pilot-plant-scale outdoor mixotrophic cultures of Phaeodactylum tricornutum using glycerol in vertical bubble column and airlift photobioreactors: Studies in fed-batch mode. Biotechnol Prog. 2004;20(3):728–36.

    Article  CAS  Google Scholar 

  69. Ceron-Garcia MC, Fernandez-Sevilla JM, Sanchez-Miron A, Garcia-Camacho F, Contreras-Gomez A, Molina-Grima E. Mixotrophic growth of Phaeodactylum tricornutum on fructose and glycerol in fed-batch and semi-continuous modes. Bioresour Technol. 2013;147:569–76.

    Article  CAS  PubMed  Google Scholar 

  70. Dillschneider R, Posten C. A linear programming approach for modeling and simulation of growth and lipid accumulation of Phaeodactylum tricornutum. Energies. 2013;6(10):5333–56.

    Article  CAS  Google Scholar 

  71. Guihéneuf F, Fouqueray M, Mimouni V, Ulmann L, Jacquette B, Tremblin G. Effect of UV stress on the fatty acid and lipid class composition in two marine microalgae Pavlova lutheri (Pavlovophyceae) and Odontella aurita (Bacillariophyceae). J Appl Phycol. 2010;22:629–38.

    Google Scholar 

  72. Moreau D, Tomasoni C, Jacquot C, Kaas R, Le Guedes R, Cadoret JP, et al. Cultivated microalgae and the carotenoid fucoxanthin from Odontella aurita as potent anti-proliferative agents in bronchopulmonary and epithelial cell lines. Environ Toxicol Pharmacol. 2006;22(1):97–103.

    Article  CAS  PubMed  Google Scholar 

  73. Haimeur A, Ulmann L, Mimouni V, Gueno F, Pineau-Vincent F, Meskini N, et al. The role of Odontella aurita, a marine diatom rich in EPA, as a dietary supplement in dyslipidemia, platelet function and oxidative stress in high-fat fed rats. Lipids Health Dis. 2012;11:13.

    Article  CAS  Google Scholar 

  74. Xia S, Wan LL, Li AF, Sang M, Zhang CW. Effects of nutrients and light intensity on the growth and biochemical composition of a marine microalga Odontella aurita. Chin J Oceanol Limnol. 2013;31(6):1163–73.

    Article  CAS  Google Scholar 

  75. Rezanka T, Petrankova M, Cepak V, Pribyl P, Sigler K, Cajthaml T. Trachydiscus minutus, a new biotechnological source of eicosapentaenoic acid. Folia Microbiol (Praha). 2010;55(3):265–9.

    Article  CAS  Google Scholar 

  76. Cepak V, Pribyl P, Kohoutkova J, Kastanek P. Optimization of cultivation conditions for fatty acid composition and EPA production in the eustigmatophycean microalga Trachydiscus minutus. J Appl Phycol. 2014;26(1):181–90.

    Article  CAS  Google Scholar 

  77. Jiang Y, Chen F, Liang SZ. Production potential of docosahexaenoic acid by the heterotrophic marine dinoflagellate Crypthecodinium cohnii. Proc Biochem. 1999;34(6–7):633–7.

    Article  CAS  Google Scholar 

  78. Jiang Y, Chen F. Effects of temperature and temperature shift on docosahexaenoic acid production by the marine microalga Crypthecodinium cohnii. J Am Oil Chem Soc. 2000;77(6):613–7.

    Article  CAS  Google Scholar 

  79. Okuda T, Ando A, Sakuradani E, Ogawa J. Isolation and characterization of a docosahexaenoic acid-phospholipids producing microorganism Crypthecodinium sp D31. J Am Oil Chem Soc. 2013;90(12):1837–44.

    Article  CAS  Google Scholar 

  80. Tatsuzawa H, Takizawa E. Changes in lipid and fatty acid composition of Pavlova lutheri. Phytochemistry. 1995;40(2):397–400.

    Article  CAS  Google Scholar 

  81. Ponis E, Parisi G, Zittelli GC, Lavista F, Robert R, Tredici MR. Pavlova lutheri: production, preservation and use as food for Crassostrea gigas larvae. Aquaculture. 2008;282(1–4):97–103.

    Article  CAS  Google Scholar 

  82. Guiheneuf F, Mimouni V, Ulmann L, Tremblin G. Combined effects of irradiance level and carbon source on fatty acid and lipid class composition in the microalga Pavlova lutheri commonly used in mariculture. J Exp Mar Biol Ecol. 2009;369(2):136–43.

    Article  CAS  Google Scholar 

  83. Shah SMU, Radziah CC, Ibrahim S, Latiff F, Othman MF, Abdullah MA. Effects of photoperiod, salinity and pH on cell growth and lipid content of Pavlova lutheri. Ann Microbiol. 2014;64(1):157–64.

    Article  CAS  Google Scholar 

  84. Patil V, Kallqvist T, Olsen E, Vogt G, Gislerod HR. Fatty acid composition of 12 microalgae for possible use in aquaculture feed. Aquac Int. 2007;15(1):1–9.

    Article  CAS  Google Scholar 

  85. Feng DN, Chen ZA, Xue S, Zhang W. Increased lipid production of the marine oleaginous microalgae Isochrysis zhangjiangensis (Chrysophyta) by nitrogen supplement. Bioresour Technol. 2011;102(12):6710–6.

    Article  CAS  PubMed  Google Scholar 

  86. Liu J, Sommerfeld M, Hu Q. Screening and characterization of Isochrysis strains and optimization of culture conditions for docosahexaenoic acid production. App Microbiol Biotechnol. 2013;97(11):4785–98.

    Article  CAS  Google Scholar 

  87. Fradique M, Batista AP, Nunes MC, Gouveia L, Bandarra NM, Raymundo A. Isochrysis galbana and Diacronema vlkianum biomass incorporation in pasta products as PUFA’s source. Lwt-Food Sci Technol. 2013;50(1):312–9.

    Article  CAS  Google Scholar 

  88. Honda D, Yokochi T, Nakahara T, Erata M, Higashihara T. Schizochytrium limacinum sp. nov., a new thraustochytrid from a mangrove area in the west Pacific Ocean. Mycol Res. 1998;102:439–48.

    Article  Google Scholar 

  89. Chin HJ, Shen TF, Su HP, Ding ST. Schizochytrium limacinum SR-21 as a source of docosahexaenoic acid: optimal growth and use as a dietary supplement for laying hens. Aust J Agric Res. 2006;57(1):13–20.

    Article  CAS  Google Scholar 

  90. Kamlangdee N, Fan KW. Polyunsaturated fatty acids production by Schizochytrium sp. isolated from mangrove. Songklanakarin J Sci Technol. 2003;25(5):9.

    Google Scholar 

  91. Ren L-J, Ji X-J, Huang H, Qu L, Feng Y, Tong Q-Q, et al. Development of a stepwise aeration control strategy for efficient docosahexaenoic acid production by Schizochytrium sp. App Microbiol Biotechnol. 2010;87(5):1649–56.

    Article  CAS  Google Scholar 

  92. Qu L, Ji XJ, Ren LJ, Nie ZK, Feng Y, Wu WJ, et al. Enhancement of docosahexaenoic acid production by Schizochytrium sp. using a two-stage oxygen supply control strategy based on oxygen transfer coefficient. Lett App Microbiol. 2011;52(1):22–7.

    Google Scholar 

  93. Huang JZ, Aki T, Hachida K, Yokochi T, Kawamoto S, Shigeta S, et al. Profile of polyunsaturated fatty acids produced by Thraustochytrium sp KK17-3. J Am Oil Chem Soc. 2001;78(6):605–10.

    Article  CAS  Google Scholar 

  94. Shene C, Leyton A, Rubilar M, Pinelo M, Acevedo F, Morales E. Production of lipids and docosahexasaenoic acid (DHA) by a native Thraustochytrium strain. Eur J Lipid Sci Technol. 2013;115(8):890–900.

    Article  CAS  Google Scholar 

  95. Singh A, Wilson S, Ward OP. Docosahexaenoic acid (DHA) production by Thraustochytrium sp ATCC 20892. World J Microbiol Biotechnol. 1996;12(1):76–81.

    Article  CAS  PubMed  Google Scholar 

  96. Akimoto M, Shirai A, Ohtaguchi K, Koide K. Carbon dioxide fixation and polyunsaturated fatty acid production by the red alga Porphyridium cruentum. Appl Biochem Biotechnol. 1998;73(2–3):269–78.

    Article  CAS  Google Scholar 

  97. Colla LM, Bertolin TE, Costa JAV. Fatty acids profile of Spirulina platensis grown under different temperatures and nitrogen concentrations. Zeitschrift Fur Naturforschung C— J Biosci. 2004;59(1–2):55–9.

    CAS  Google Scholar 

  98. Guil-Guerrero JL, Belarbi EH, Rebolloso-Fuentes MM. Eicosapentaenoic and arachidonic acids purification from the red microalga Porphyridium cruentum. Bioseparation. 2000;9(5):299–306.

    Article  CAS  PubMed  Google Scholar 

  99. Lang IK, Hodac L, Friedl T, Feussner I. Fatty acid profiles and their distribution patterns in microalgae: a comprehensive analysis of more than 2000 strains from the SAG culture collection. BMC Plant Biol. 2011;11:16.

    Article  CAS  Google Scholar 

  100. Renaud SM, Thinh LV, Lambrinidis G, Parry DL. Effect of temperature on growth, chemical composition and fatty acid composition of tropical Australian microalgae grown in batch cultures. Aquaculture. 2002;211(1–4):195–214.

    Article  CAS  Google Scholar 

  101. Renaud SM, Zhou HC, Parry DL, Thinh LV, Woo KC. Effect of temperature on the growth, total lipid content and fatty acid composition of recently isolated tropical microalgae Isochrysis sp, Nitzschia closterium, Nitzschia paleacea, and commercial species Isochrysis sp (clone T ISO). J Appl Phycol. 1995;7(6):595–602.

    Article  CAS  Google Scholar 

  102. Wen ZY, Chen F. Production potential of eicosapentaenoic acid by the diatom Nitzschia laevis. Biotechnol Lett. 2000;22(9):727–33.

    Article  CAS  Google Scholar 

  103. Wen ZY, Chen F. Application of statistically-based experimental designs for the optimization of eicosapentaenoic acid production by the diatom Nitzschia laevis. Biotechnol Bioeng. 2001;75(2):159–69.

    Article  CAS  PubMed  Google Scholar 

  104. Otero A, Fabregas J. Changes in the nutrient composition of Tetraselmis suecica cultured semicontinuously with different nutrient concentrations and renewal rates. Aquaculture. 1997;159(1–2):111–23.

    Article  CAS  Google Scholar 

  105. Guzman HM, Valido AD, Duarte LC, Presmanes KF. Estimate by means of flow cytometry of variation in composition of fatty acids from Tetraselmis suecica in response to culture conditions. Aquac Int. 2010;18(2):189–99.

    Article  CAS  Google Scholar 

  106. Chang KJL, Dunstan GA, Abell GCJ, Clementson LA, Blackburn SI, Nichols PD, et al. Biodiscovery of new Australian thraustochytrids for production of biodiesel and long-chain omega-3 oils. App Microbiol Biotechnol. 2012;93(5):2215–31.

    Article  CAS  Google Scholar 

  107. Kumari P, Bijo AJ, Mantri VA, Reddy CRK, Jha B. Fatty acid profiling of tropical marine macroalgae: an analysis from chemotaxonomic and nutritional perspectives. Phytochemistry. 2013;86:44–56.

    Article  CAS  PubMed  Google Scholar 

  108. Kumari P, Kumar M, Gupta V, Reddy CRK, Jha B. Tropical marine macroalgae as potential sources of nutritionally important PUFAs. Food Chem. 2010;120(3):749–57.

    Article  CAS  Google Scholar 

  109. Pereira H, Barreira L, Figueiredo F, Custodio L, Vizetto-Duarte C, Polo C, et al. Polyunsaturated fatty acids of marine macroalgae: potential for nutritional and pharmaceutical applications. Mar Drugs. 2012;10(9):1920–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Graeve M, Kattner G, Wiencke C, Karsten U. Fatty acid composition of Arctic and Antartic macroalgae: indicator of phylogenetic and trophic relationships. Mar Ecol Prog Ser. 2002;231:67–74.

    Article  CAS  Google Scholar 

  111. van Ginneken VJT, Helsper J, de Visser W, van Keulen H, Brandenburg WA. Polyunsaturated fatty acids in various macroalgal species from north Atlantic and tropical seas. Lipids Health Dis. 2011;10:8.

    Article  CAS  Google Scholar 

  112. Sanchez-Machado DI, Lopez-Cervantes J, Lopez-Hernandez J, Paseiro-Losada P. Fatty acids, total lipid, protein and ash contents of processed edible seaweeds. Food Chem. 2004;85(3):439–44.

    Article  CAS  Google Scholar 

  113. Gressler V, Yokoya NS, Fujii MT, Colepicolo P, Mancini J, Torres RP, et al. Lipid, fatty acid, protein, amino acid and ash contents in four Brazilian red algae species. Food Chem. 2010;120(2):585–90.

    Article  CAS  Google Scholar 

  114. Nelson MM, Phleger CF, Nichols PD. Seasonal lipid composition in macroalgae of the northeastern pacific ocean. Bot Marina. 2002;45(1):58–65.

    Article  CAS  Google Scholar 

  115. Ivesa L, Blazina M, Najdek M. Seasonal variations in fatty acid composition of Caulerpa taxifolia (M. Vahl.) C. Ag. in the northern Adriatic Sea (Malinska, Croatia). Bot Marina. 2004;47(3):209–14.

    Google Scholar 

  116. Teoh ML, Chu WL, Marchant H, Phang SM. Influence of culture temperature on the growth, biochemical composition and fatty acid profiles of six Antarctic microalgae. J Appl Phycol. 2004;16(6):421–30.

    Article  CAS  Google Scholar 

  117. Cyril J, Powell GL, Duncan RR, Baird WV. Changes in membrane polar lipid fatty acids of seashore paspalum in response to low temperature exposure. Crop Sci. 2002;42(6):2031–7.

    Article  CAS  Google Scholar 

  118. Winfield MO, Lu CG, Wilson ID, Coghill JA, Edwards KJ. Plant responses to cold: transcriptome analysis of wheat. Plant Biotechnol J. 2010;8(7):749–71.

    Article  CAS  PubMed  Google Scholar 

  119. Mendes LF, Stevani C, Zambotti-Villela L, Yokoya N, Colepicolo P. Toxic effect of metal cation binary mixtures to the seaweed Gracilaria domingensis (Gracilariales, Rhodophyta). Environ Sci Pollut Res. 2014;21(13):8216–23.

    Article  CAS  Google Scholar 

  120. Khotimchenko SV, Yakovleva IM. Effect of solar irradiance on lipids of the green alga Ulva fenestrata Postels et Ruprecht. Bot Marina. 2004;47(5):395–401.

    Article  CAS  Google Scholar 

  121. Khotimchenko SV, Yakovleva IM. Lipid composition of the red alga Tichocarpus crinitus exposed to different levels of photon irradiance. Phytochemistry. 2005;66(1):73–9.

    Article  CAS  PubMed  Google Scholar 

  122. Schmid M, Guiheneuf F, Stengel DB. Fatty acid contents and profiles of 16 macroalgae collected from the Irish Coast at two seasons. J Appl Phycol. 2014;26(1):451–63.

    Article  CAS  Google Scholar 

  123. Nomura M, Kamogawa H, Susanto E, Kawagoe C, Yasui H, Saga N, et al. Seasonal variations of total lipids, fatty acid composition, and fucoxanthin contents of Sargassum horneri (Turner) and Cystoseira hakodatensis (Yendo) from the northern seashore of Japan. J Appl Phycol. 2013;25(4):1159–69.

    Article  CAS  Google Scholar 

  124. Boulom S, Robertson J, Hamida’b N, Ma QL, Lu J. Seasonal changes in lipid, fatty acid, alpha-tocopherol and phytosterol contents of seaweed, Undaria pinnatifida, in the Marlborough sounds, New Zealand. Food Chem. 2014;161:261–9.

    Article  CAS  PubMed  Google Scholar 

  125. Kendel M, Couzinet-Mossion A, Viau M, Fleurence J, Barnathan G, Wielgosz-Collin G. Seasonal composition of lipids, fatty acids, and sterols in the edible red alga Grateloupia turuturu. J Appl Phycol. 2013;25(2):425–32.

    Article  CAS  Google Scholar 

  126. Kang JY, Benliro IMP, Lee IJ, Choi JY, Joo J, Choi YS, et al. Viability, fatty acid composition and structure of the Corralline alga Corallina pilulifera. Bot Sci. 2014;92(1):103–9.

    Article  Google Scholar 

  127. Rocchetta I, Mazzuca M, Conforti V, Ruiz L, Balzaretti V, de Molina MDR. Effect of chromium on the fatty acid composition of two strains of Euglena gracilis. Environ Pollut. 2006;141(2):353–8.

    Article  CAS  PubMed  Google Scholar 

  128. Pinto E, Sigaud-Kutner TCS, Leitao MAS, Okamoto OK, Morse D, Colepicolo P. Heavy metal-induced oxidative stress in algae. J Phycol. 2003;39(6):1008–18.

    Article  CAS  Google Scholar 

  129. Pinto E, Carvalho AP, Cardozo KHM, Malcata FX, Anjos FMD, Colepicolo P. Effects of heavy metals and light levels on the biosynthesis of carotenoids and fatty acids in the macroalgae Gracilaria tenuistipitata (var. liui Zhang & Xia). Braz J Pharmacognosy. 2011;21(2):349–54.

    Google Scholar 

  130. Kumar M, Bijo AJ, Baghel RS, Reddy CRK, Jha B. Selenium and spermine alleviate cadmium induced toxicity in the red seaweed Gracilaria dura by regulating antioxidants and DNA methylation. Plant Physiol Biochem. 2012;51:129–38.

    Article  CAS  PubMed  Google Scholar 

  131. Imbs AB, Latyshev NA, Svetashev VI, Skriptsova AV, Le TT, Pham MQ, et al. Distribution of polyunsaturated fatty acids in red algae of the genus Gracilaria, a promising source of prostaglandins. Russ J Mar Biol. 2012;38(4):339–45.

    Article  CAS  Google Scholar 

  132. Nozaki H, Takano H, Misumi O, Terasawa K, Matsuzaki M, Maruyama S, et al. A 100 %-complete sequence reveals unusually simple genomic features in the hot-spring red alga Cyanidioschyzon merolae. BMC Biol. 2007;5:28.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Armbrust EV, Berges JA, Bowler C, Green BR, Martinez D, Putnam NH, et al. The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science (New York, NY). 2004;306(5693):79–86.

    Google Scholar 

  134. Bowler C, Allen AE, Badger JH, Grimwood J, Jabbari K, Kuo A, et al. The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature. 2008;456(7219):239–44.

    Article  CAS  PubMed  Google Scholar 

  135. Derelle E, Ferraz C, Rombauts S, Rouze P, Worden AZ, Robbens S, et al. Genome analysis of the smallest free-living eukaryote Ostreococcus tauri unveils many unique features. Proc Nat Acad Sci USA. 2006;103(31):11647–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Gimpel JA, Specht EA, Georgianna DR, Mayfield SP. Advances in microalgae engineering and synthetic biology applications for biofuel production. Curr Opin Chem Biol. 2013;17(3):489–95.

    Article  CAS  PubMed  Google Scholar 

  137. Li HY, Lu Y, Zheng JW, Yang WD, Liu JS. Biochemical and genetic engineering of diatoms for polyunsaturated fatty acid biosynthesis. Mar Drugs. 2014;12(1):153–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Abbadi A, Domergue F, Bauer J, Napier JA, Welti R, Zahringer U, et al. Biosynthesis of very-long-chain polyunsaturated fatty acids in transgenic oilseeds: Constraints on their accumulation. Plant Cell. 2004;16(10):2734–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Cheng BF, Wu GH, Vrinten P, Falk K, Bauer J, Qiu X. Towards the production of high levels of eicosapentaenoic acid in transgenic plants: the effects of different host species, genes and promoters. Transgenic Res. 2010;19(2):221–9.

    Article  CAS  PubMed  Google Scholar 

  140. Thelen JJ, Ohlrogge JB. Metabolic engineering of fatty acid biosynthesis in plants. Metab Eng. 2002;4(1):12–21.

    Article  CAS  PubMed  Google Scholar 

  141. Blatti JL, Michaud J, Burkart MD. Engineering fatty acid biosynthesis in microalgae for sustainable biodiesel. Curr Opin Chem Biol. 2013;17(3):496–505.

    Article  CAS  PubMed  Google Scholar 

  142. Ryckebosch E, Bruneel C, Muylaert K, Foubert, I. Microalgae as an alternative source of omega-3 long chain polyunsaturated fatty acids. Lipid Technol. 2012;24:128–30.

    Google Scholar 

  143. Zaslavskaia LA, Lippmeier JC, Shih C, Ehrhardt D, Grossman AR, Apt KE. Trophic conversion of an obligate photoautotrophic organism through metabolic engineering. Science (New York, NY). 2001;292(5524):2073–5.

    Google Scholar 

  144. Tonon T, Qing R, Harvey D, Li Y, Larson TR, Graham IA. Identification of a long-chain polyunsaturated fatty acid acyl-coenzyme A synthetase from the diatom Thalassiosira pseudonana. Plant Physiol. 2005;138(1):402–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Tonon T, Sayanova O, Michaelson LV, Qing R, Harvey D, Larson TR, et al. Fatty acid desaturases from the microalga Thalassiosira pseudonana. FEBS J. 2005;272(13):3401–12.

    Article  CAS  PubMed  Google Scholar 

  146. Xu JZZ, Zou J. A membrane-bound glycerol-3-phosphate acyltransferase from Thalassiosira pseudonana regulates acyl composition of glycerolipids. Botany. 2009;87(6):544–51.

    Article  CAS  Google Scholar 

  147. Domergue F, Lerchl J, Zahringer U, Heinz E. Cloning and functional characterization of Phaeodactylum tricornutum front-end desaturases involved in eicosapentaenoic acid biosynthesis. Eur Jo Biochem/FEBS. 2002;269(16):4105–13.

    Article  CAS  Google Scholar 

  148. Domergue F, Spiekermann P, Lerchl J, Beckmann C, Kilian O, Kroth PG, et al. New insight into Phaeodactylum tricornutum fatty acid metabolism. Cloning and functional characterization of plastidial and microsomal delta12-fatty acid desaturases. Plant Physiol. 2003;131(4):1648–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Chi X, Zhang X, Guan X, Ding L, Li Y, Wang M, et al. Fatty acid biosynthesis in eukaryotic photosynthetic microalgae: identification of a microsomal delta 12 desaturase in Chlamydomonas reinhardtii. J Microbiol (Seoul, Korea). 2008;46(2):189–201.

    Google Scholar 

  150. Adarme-Vega TC, Lim DK, Timmins M, Vernen F, Li Y, Schenk PM. Microalgal biofactories: a promising approach towards sustainable omega-3 fatty acid production. Microb Cell Fact. 2012;11:96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Cao Y, Cao Y, Zhao M. Biotechnological production of eicosapentaenoic acid: from a metabolic engineering point of view. Proc Biochem. 2012;47:1320–6.

    Google Scholar 

  152. Guedes AC, Amaro HM, Barbosa CR, Pereira RD, Malcata FX. Fatty acid composition of several wild microalgae and cyanobacteria, with a focus on eicosapentaenoic, docosahexaenoic and alpha-linolenic acids for eventual dietary uses. Food Res Int. 2011;44(9):2721–9.

    Article  CAS  Google Scholar 

  153. Hamilton ML, Haslam RP, Napier JA, Sayanova O. Metabolic engineering of Phaeodactylum tricornutum for the enhanced accumulation of omega-3 long chain polyunsaturated fatty acids. Metabol Eng. 2014;22:3–9.

    Article  CAS  Google Scholar 

  154. Harwood JL, Guschina IA. The versatility of algae and their lipid metabolism. Biochimie. 2009;91(6):679–84.

    Article  CAS  PubMed  Google Scholar 

  155. Liang MH, Jiang JG. Advancing oleaginous microorganisms to produce lipid via metabolic engineering technology. Prog Lip Res. 2013;52(4):395–408.

    Article  CAS  Google Scholar 

  156. Niu YF, Zhang MH, Li DW, Yang WD, Liu JS, Bai WB, et al. Improvement of neutral lipid and polyunsaturated fatty acid biosynthesis by overexpressing a type 2 diacylglycerol acyltransferase in marine diatom Phaeodactylum tricornutum. Mar Drugs. 2013;11(11):4558–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Chaturvedi R, Uppalapati SR, Alamsjah MA, Fujita Y. Isolation of quizalofop-resistant mutants of Nannochloropsis oculata (Eustigmatophyceae) with high eicosapentaenoic acid following N-methyl-N-nitrosourea-induced random mutagenesis. J App Phycol. 2004;16:135–44.

    Google Scholar 

  158. Gong Y, Guo X, Wan X, Liang Z, Jiang M. Characterization of a novel thioesterase (PtTE) from Phaeodactylum tricornutum. J Bas Microbiol. 2011;51(6):666–72.

    Article  CAS  Google Scholar 

  159. Blatti JL, Beld J, Behnke CA, Mendez M, Mayfield SP, Burkart MD. Manipulating fatty acid biosynthesis in microalgae for biofuel through protein-protein interactions. PLoS ONE. 2012;7(9):e42949.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Radakovits R, Eduafo PM, Posewitz MC. Genetic engineering of fatty acid chain length in Phaeodactylum tricornutum. Metab Eng. 2011;13(1):89–95.

    Article  CAS  PubMed  Google Scholar 

  161. Gao Q, Wang W, Zhao H, Lu X. Effects of fatty acid activation on photosynthetic production of fatty acid-based biofuels in Synechocystis sp. PCC6803. Biotechnol Biofuels. 2012;5(1):17.

    Google Scholar 

  162. Ruffing AM, Jones HD. Physiological effects of free fatty acid production in genetically engineered Synechococcus elongatus PCC 7942. Biotechnol Bioeng. 2012;109(9):2190–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Miyake M, Takase K, Narato M, Khatipov E, Schnackenberg J, Shirai M, et al. Polyhydroxybutyrate production from carbon dioxide by cyanobacteria. App Biochem Biotechnol. 2000;84–86:991–1002.

    Article  Google Scholar 

  164. Korkhovoi VI, Blium IB. Biodiesel from microalgae: ways of increasing effectiveness of lipids accumulation by genetic engineering methods. TSitologiia i genetika. 2013;47(6):30–42.

    Google Scholar 

  165. Li Y, Han D, Hu G, Dauvillee D, Sommerfeld M, Ball S, et al. Chlamydomonas starchless mutant defective in ADP-glucose pyrophosphorylase hyper-accumulates triacylglycerol. Metabol Eng. 2010;12(4):387–91.

    Article  CAS  Google Scholar 

  166. Li Y, Han D, Hu G, Sommerfeld M, Hu Q. Inhibition of starch synthesis results in overproduction of lipids in Chlamydomonas reinhardtii. Biotechnol Bioeng. 2010;107(2):258–68.

    Article  CAS  PubMed  Google Scholar 

  167. Ramazanov A, Ramazanov Z. Isolation and characterization of a starchless mutant of Chlorella pyrenoidosa STL-PI with a high growth rate, and high protein and polyunsaturated fatty acid content. Phycol Res. 2006;54:255–9.

    Google Scholar 

  168. Ball S, Marianne T, Dirick L, Fresnoy M, Delrue B, Decq A. A Chlamydomonas reinhardtii low-starch mutant is defective for 3-phosphoglycerate activation and orthophosphate inhibition of ADP-glucose pyrophosphorylase. Planta. 1991;185(1):17–26.

    Article  CAS  PubMed  Google Scholar 

  169. Plumed MP, Villarejo, A., de los Rios, A., García-Reina, G, Ramazanov, Z. The CO2 concentrating mechanism in a starchless mutant of the green unicellular alga Chlorella pyrenoidosa. Planta. 1996;200:28–31.

    Google Scholar 

  170. Song D, Fu J, Shi D. Exploitation of oil-bearing microalgae for biodiesel. Chin J Biotechnol. 2008;24(3):341–8.

    Article  CAS  Google Scholar 

  171. Fan KW, Jiang Y, Faan YW, Chen F. Lipid characterization of mangrove thraustochytrid-Schizochytrium mangrovei. J Agric Food Chem. 2007;55(8):2906–10.

    Article  CAS  PubMed  Google Scholar 

  172. Yan J, Cheng R, Lin X, You S, Li K, Rong H, et al. Overexpression of acetyl-CoA synthetase increased the biomass and fatty acid proportion in microalga Schizochytrium. App Microbiol Biotechnol. 2013;97(5):1933–9.

    Article  CAS  Google Scholar 

  173. Trentacoste EM, Shrestha RP, Smith SR, Gle C, Hartmann AC, Hildebrand M, et al. Metabolic engineering of lipid catabolism increases microalgal lipid accumulation without compromising growth. Proc Nat Acad Sci USA. 2013;110(49):19748–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Hsieh HJ, Su CH, Chien LJ. Accumulation of lipid production in Chlorella minutissima by triacylglycerol biosynthesis-related genes cloned from Saccharomyces cerevisiae and Yarrowia lipolytica. J Microbiol (Seoul, Korea). 2012;50(3):526–34.

    Google Scholar 

  175. Liu X, Sheng J, Curtiss R 3rd. Fatty acid production in genetically modified cyanobacteria. Proc Nat Aca Sci USA. 2011;108(17):6899–904.

    Article  CAS  Google Scholar 

  176. Magnuson K, Jackowski S, Rock CO, Cronan JE Jr. Regulation of fatty acid biosynthesis in Escherichia coli. Microbiol Rev. 1993;57(3):522–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Hu P, Borglin S, Kamennaya NA, Chen L, Park H, Mahoney L, Kijac A, Shan G, Chavarría KL, Zhang C, Quinn NW, Wemmerc D, Holman H-Y, Jansson C. Metabolic phenotyping of the cyanobacterium Synechocystis 6803 engineered for production of alkanes and free fatty acids. App Energy. 2013;102:850–9.

    Google Scholar 

  178. Chen CY, Chen YC, Huang HC, Huang CC, Lee WL, Chang JS. Engineering strategies for enhancing the production of eicosapentaenoic acid (EPA) from an isolated microalga Nannochloropsis oceanica CY2. Biores Technol. 2013;147:160–7.

    Article  CAS  Google Scholar 

  179. Chen G, Qu S, Wang Q, Bian F, Peng Z, Zhang Y, et al. Transgenic expression of delta-6 and delta-15 fatty acid desaturases enhances omega-3 polyunsaturated fatty acid accumulation in Synechocystis sp. PCC6803. Biotechnol Biofuels. 2014;7(1):32.

    Google Scholar 

  180. Xue Z, Sharpe PL, Hong SP, Yadav NS, Xie D, Short DR, et al. Production of omega-3 eicosapentaenoic acid by metabolic engineering of Yarrowia lipolytica. Nat Biotechnol. 2013;31(8):734–40.

    Article  CAS  PubMed  Google Scholar 

  181. Xie D, Jackson EN, Zhu Q. Sustainable source of omega-3 eicosapentaenoic acid from metabolically engineered Yarrowia lipolytica: from fundamental research to commercial production. App Microbiol Biotechnol. 2015:1–12.

    Google Scholar 

  182. Liang Y, Maeda Y, Sunaga Y, Muto M, Matsumoto M, Yoshino T, et al. Biosynthesis of polyunsaturated fatty acids in the oleaginous marine diatom Fistulifera sp. strain JPCC DA0580. Mar Drugs. 2013;11(12):5008–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Financial support to the authors RZ and RR was provided by Algabiomac project (MAC/3/C217), PCT-MAC 2007–2013 program, European Union. NJV acknowledges financial support from Algatech project (CZ.1.05/2.1.00/03.0110), Czech Republic, and also assistance from Dr. F. Goecke for literature and data discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Zárate .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zárate, R., el Jaber-Vazdekis, N., Ramírez-Moreno, R. (2016). Importance of Polyunsaturated Fatty Acids from Marine Algae. In: Hegde, M., Zanwar, A., Adekar, S. (eds) Omega-3 Fatty Acids. Springer, Cham. https://doi.org/10.1007/978-3-319-40458-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40458-5_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40456-1

  • Online ISBN: 978-3-319-40458-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics