Skip to main content

Omega-3 Milk

  • Chapter
  • First Online:
Omega-3 Fatty Acids

Abstract

Alpha-linolenic acid (ALA) is important constituent in human breast milk. Omega-3-fatty acid (n-3-FA) plays an important role in infants post birth development; omega-3-fatty acids are obtained from breast milk. Traditionally, cattle grazed in the field and get some omega-3 fatty acid from the green pastures. However, now, they are fed with defined diet solely for getting high milk yield, which resulted in deficiency in omega-3 fatty acid in milk. Various attempts have been made to fortify food products with omega-3 fatty acid. Fortification of food with n-3-FA may offer an effective way of increasing omega-3 long-chain polyunsaturated fatty acid intakes. Recent data indicate that blend of dairy lipids and omega-3-fatty acid from vegetarian oil, can potentiate higher levels of n-3 LC-PUFA levels endogenously. Enriching cattle milk by feeding omega-3-rich cattle feed is also not straight forward. Biofortification is not possible and is met with a biological hurdle in the cattle, as they are ruminants. Several attempts have been made to fortify milk with omega-3 fatty acid or preparation of omega-3-fortified formula milk for infants. Further this chapter reviews crucial role of omega-3-milk in human health especially in mother and child health.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ALA:

Alpha-linolenic acid

n-3-FA:

Omega-3 fatty acid

n-3 LC-PUFA:

Omega-3 long-chain polyunsaturated fatty acid

LA:

Linoleic acid

EFAs:

Essential fatty acids

DHA:

Docosahexaenoic acid

EPA:

Eicosapentaenoic acid

AA:

Arachidonic acid

References

  1. American Dietetic Association. Position of the american dietetic association: promoting and supporting breastfeeding. JADA. 2005;105:810–8.

    Article  Google Scholar 

  2. Morris DS. Flax—A Health and Nutrition Primer. 2007, 4th ed. Flax Council of Canada. Winnipeg, MB, Canada. http://www.jitinc.com/flax/brochure02.pdf.

  3. Klein CJ. Nutrient requirements for preterm infant formulas. J Nutr. 2002;132:1395S–577S.

    CAS  PubMed  Google Scholar 

  4. Burdge GC, Calder PC. Conversion of alpha-linolenic acid to longer-chain polyunsaturated fatty acids in human adults. Reprod Nutr Dev. 2005;45:581–97.

    Article  CAS  PubMed  Google Scholar 

  5. Connor WE. Importance of n-3 fatty acids in health and disease. Am J Clin Nutr. 2000;71:171S–5S.

    CAS  PubMed  Google Scholar 

  6. Brenna JT, Salem N, Sinclair AJ, Cunnane SC. For the international society for the study of fatty acids and lipids, ISSFAL, α-linolenic acid supplementation and conversion to n-3 long-chain polyunsaturated fatty acids in humans. Prostaglandins Leukot Essent Fatty Acids. 2009;80(2–3):85–91.

    Article  CAS  PubMed  Google Scholar 

  7. Horrocks LA, Yeo YK. Health benefits of docosahexaenoic acid DHA. Pharmacol Res. 1999;40:211–25.

    Article  CAS  PubMed  Google Scholar 

  8. Arterburn LM, Hall EB, Oken H. Distribution, interconversion, and dose response of n− 3 fatty acids in humans. Am J Clin Nutr. 2006;83(6):S1467–76.

    Google Scholar 

  9. Burdge G. Alpha-linolenic acid metabolism in men and women: nutritional and biological implications. Curr Opin Clin Nutr Metab Care. 2004;7(2):137–44.

    Article  CAS  PubMed  Google Scholar 

  10. Burdge GC, Finnegan YE, Minihane AM, Williams CM, Wootton SA. Effect of altered dietary n-3 fatty acid intake upon plasma lipid fatty acid composition, conversion of [13C] alpha-linolenic acid to longer-chain fatty acids and partitioning towards beta-oxidation in older men. Br J Nutr. 2003;90(2):311–21.

    Article  CAS  PubMed  Google Scholar 

  11. Burdge GC, Jones AE, Wootton SA. Eicosapentaenoic and docosapentaenoic acids are the principal products of alpha-linolenic acid metabolism in young men. Br J Nutr. 2002;88(4):355–63.

    Article  CAS  PubMed  Google Scholar 

  12. Dyerberg J, Madsen P, Moller JM, Aardestrup I, Schmidt EB. Bioavailability of marine n-3-fatty acid formulations. Prostaglandins Leukot Essent Fatty Acids. 2010;83(3):137–41.

    Article  CAS  PubMed  Google Scholar 

  13. Schuchardt JP, Hahn A. Bioavailability of long-chain omega-3 fatty acids. Prostaglandins Leukot Essent Fatty Acids. 2013;89(1):1–8.

    Article  CAS  PubMed  Google Scholar 

  14. Du Q, Martin JC, Agnani G, Pages N, Leruyet P, Carayon P, Delplanque P. Dairy fat blends high in α-linolenic acid are superior to n-3 fatty-acid-enriched palm oil blends for increasing DHA levels in the brains of young rats. J Nutr Biochem. 2012;23:1573–82.

    Article  CAS  PubMed  Google Scholar 

  15. Gianni ML, Roggero P, Baudry C, Ligneul A, Morniroli D, Garbarino F, Ruyet PL, Mosca F. The influence of a formula supplemented with dairy lipids and plant oils on the erythrocyte membrane omega-3 fatty acid profile in healthy full-term infants: a double-blind randomized controlled trial. BMC Pediatrics. 2012;12:164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Innis SM. Dietary (n-3) fatty acids and brain development. J Nutr. 2007;137:855–9.

    CAS  PubMed  Google Scholar 

  17. Makrides M, Simmer K, Goggin M, Gibson RA. Erythrocyte docosahexaenoic acid correlates with the visual response of healthy, term infants. Pediatr Res. 1993;33:425–7.

    CAS  PubMed  Google Scholar 

  18. Farquharson J, Jamieson EC, Abbasi KA, Patrick WJ, Logan RW, Cockburn F. Effect of diet on the fatty acid composition of the major phospholipids of infant cerebral cortex. Arch Dis Child. 1995;72:198–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Miller MR, Seifert J, Szabo NJ, Clare-Salzler M, Rewers M, Norris JM. Erythrocyte membrane fatty acid content in infants consuming formulas supplemented with docosahexaenoic acid (DHA) and arachidonic acid (ARA): an observational study. Mater Child Nutr. 2010;6:338–46.

    Article  Google Scholar 

  20. Putnam JC, Carlson SE, DeVoe PW, Barness LA. The effect of variations in dietary fatty acids on the fatty acid composition of erythrocyte phosphatidylcholine and phosphatidylethanolamine in human infants. Am J Clin Nutr. l982;36:l06–l4.

    Google Scholar 

  21. Sanders TBA, Reddy S. The influence of a vegetarian diet on the fatty acid composition of human milk and the essential fatty acid status of the infant. J Pediatr. 1992;120:S71–7.

    Article  CAS  PubMed  Google Scholar 

  22. Du Q, Martin JC. Genevieve Agnani, Nicole Pages, Pascale Leruyet, Pierre Carayon, Bernadette Delplanque. Dairy fat blends high in α-linolenic acid are superior to n-3 fatty-acid-enriched palm oil blends for increasing DHA levels in the brains of young rats. J Nutr Biochem. 2012;23:1573–82.

    Article  CAS  PubMed  Google Scholar 

  23. Bhalerao SS, Hegde MV, Ranade A, Avari P, Nikam S, Kshirsagar K, Kadam SS. Studies in production of omega-3 chicken meat II. Ind J Poultry Sci. 2010;45(3):273–9.

    Google Scholar 

  24. Grashorn MA. Enrichment of eggs and poultry meat with biologically active substances by feed modifications and effects on the final quality of the product. Pol J Food Nutr Sci. 2005;14(55):15–20.

    CAS  Google Scholar 

  25. Jenkins TC. Lipid metabolism in the rumen. J Dairy Sci. 1993;76:3851–63.

    Article  CAS  PubMed  Google Scholar 

  26. Kim EJ, Huws SA, Lee MRF, Scollan ND. Dietary transformation of lipid in the rumen microbial ecosystem. Asian-Aust J Anim Sci. 200;22(9):1341–50.

    Google Scholar 

  27. Jenkins T. Challenges of meeting cow demands for omega fatty acids. Florida Ruminant Nut Symp. 2004;52:66.

    Google Scholar 

  28. Abu-Saad K, Fraser D. Maternal nutrition and birth outcomes. Epidemiol Rev. 2010;32(1):5–25.

    Article  PubMed  Google Scholar 

  29. Villar J, Merialdi M, Gülmezoglu AM, Abalos E, Carroli G, Kulier R, de Onis M. Nutritional interventions during pregnancy for the prevention or treatment of maternal morbidity and preterm delivery: an overview of randomized controlled trials. J Nutr. 2003;133(5):1606S–25S.

    CAS  PubMed  Google Scholar 

  30. Natale CD, Fabio SD. Fortification of maternal milk. J Pediatr Neonat Individual Med. 2013;2(2):e020224.

    Google Scholar 

  31. Bhutta ZA, Ahmed T, Black RE, Cousens S, Dewey K, Giugliani E, Haider BA, Kirkwood B, Morris SS, Sachdev HPS, Shekar M. What works? Interventions for maternal and child under nutrition and survival. Lancet. 2008;371(9610):417–40.

    Article  PubMed  Google Scholar 

  32. Benton D. The influence of dietary status on the cognitive performance of children. Mol Nutr Food Res. 2010;54(4):457–70.

    Article  CAS  PubMed  Google Scholar 

  33. De Souza AS, Fernandes FS, Do Carmo MD. Effects of maternal malnutrition and postnatal nutritional rehabilitation on brain fatty acids, learning and memory. Nutr Rev. 2011;69(3):132–44.

    Article  PubMed  Google Scholar 

  34. Schuchardt JP, Huss M, Stauss-Grabo M, Hahn A. Significance of long-chain polyunsaturated fatty acids (PUFAs) for the development and behavior of children. Eur J Pediatr. 2010;169:149–64.

    Article  CAS  PubMed  Google Scholar 

  35. Jensen RG, Hagerty MM, McMahon KE. Lipids of human milk and infant formulas: a review. Am J Clin Nutr. 1978;31:990–1016.

    CAS  PubMed  Google Scholar 

  36. McCann Joyce C, Ames Bruce N. Is docosahexaenoic acid, an n − 3 long-chain polyunsaturated fatty acid, required for development of normal brain function? An overview of evidence from cognitive and behavioral tests in humans and animals. Am J Clin Nutr. 2005;82:281–95.

    CAS  PubMed  Google Scholar 

  37. Eilander A, Hundscheid DC, Osendarp SJ, Transler C, Zock PL. Effects of n-3 long chain polyunsaturated fatty acid supplementation on visual and cognitive development throughout childhood: a review of human studies. Prostaglandins Leukot Essent Fatty Acids. 2007;76:189–203.

    Article  CAS  PubMed  Google Scholar 

  38. Cetin I, Koletzko B. Long-chain [omega]-3 fatty acid supply in pregnancy and lactation. Curr Opin Clin Nutr Metab Care. 2008;11(3):297–302.

    Article  CAS  PubMed  Google Scholar 

  39. Wurtman RJ. Synapse formation and cognitive brain development: effect of docosahexaenoic acid and other dietary constituents. Metabolism. 2008;57:S6–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ramakrishnan U, Imhoff-Kunsch B, DiGirolamo AM. Role of docosahexaenoic acid in maternal and child mental health. Am J Clin Nutr. 2009;89(3):958S–62S.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ryan AS, Astwood JD, Gautier S, Kuratko CN, Nelson EB, Salem N Jr. Effects of long-chain polyunsaturated fatty acid supplementation on neurodevelopment in childhood: a review of human studies. Prostaglandins Leukot Essent Fatty Acids. 2010;82:305–14.

    Article  CAS  PubMed  Google Scholar 

  42. Schuchardt JP, Huss M, Stauss-Grabo M, Hahn A. Significance of long-chain polyunsaturated fatty acids (PUFAs) for the development and behavior of children. Eur J Pediatr. 2010;169(2):149–64.

    Article  CAS  PubMed  Google Scholar 

  43. de Souza AS, Fernandes FS, do Carmo MD. Effects of maternal malnutrition and postnatal nutritional rehabilitation on brain fatty acids, learning, and memory. Nutr Rev. 2011;69(3):132–44.

    Article  PubMed  Google Scholar 

  44. Simopoulos AP. Evolutionary aspects of omega-3-fatty acids in the food supply. Prostaglandins Leukot Essent Fatty Acids. 1999;60:421–9.

    Article  CAS  PubMed  Google Scholar 

  45. Simopoulos AP. The importance of the omega-6/omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases. Expt Biol Med. 2008;233:674–88.

    Article  CAS  Google Scholar 

  46. Daniels JL, Longnecker MP, Rowland AS, Golding J. Fish intake during pregnancy and early cognitive development of offspring. Epidemiology. 2004;15:394–402.

    Article  PubMed  Google Scholar 

  47. Hibbeln JR, Davis JM, Steer C, Emmett P, Rogers I, Williams C, Golding J. Maternal seafood consumption in pregnancy and neurodevelopmental outcomes in childhood (ALSPAC study): an observational cohort study. Lancet. 2007;369(9561):578–85.

    Article  PubMed  Google Scholar 

  48. Jacobson JL, Jacobson SW, Muckle G, Kaplan-Estrin M, Ayotte P, Dewailly E. Beneficial effects of a polyunsaturated fatty acid on infant development: evidence from the inuit of arctic Quebec. J Pediatrics. 2008;152(3):356–64.

    Article  CAS  Google Scholar 

  49. Oken E, Osterdal ML, Gillman MW, Knudsen VK, Halldorsson TI, Strøm M, Bellinger DC, Hadders-Algra M, Michaelsen KF, Olsen SF. Associations of maternal fish intake during pregnancy and breastfeeding duration with attainment of developmental milestones in early childhood: a study from the danish national birth cohort. Am J ClinNutr. 2008;88(3):789–96.

    CAS  Google Scholar 

  50. Oken E, Radesky JS, Wright RO, Bellinger DC, Amarasiriwardena CJ, Kleinman KP, Hu H, Gillman MW. Maternal fish intake during pregnancy, blood mercury levels, and child cognition at age 3 years in a US cohort. Am J Epidemiol. 2008;167(10):1171–81.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Boucher O, Burden MJ, Muckle G, Saint-Amour D, Ayotte P, Dewailly E, Nelson CA, Jacobson SW, Jacobson JL. Neuro physiologic and neuro behavioral evidence of beneficial effects of prenatal omega-3 fatty acid intake on memory function at school age. Am J Clin Nutr. 2011;93:1025–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Helland IB, Smith L, Blomen B, Saarem K, Saugstad OD, Drevon CA. Effect of supplementing pregnant and lactating mothers withn-3 very-long-chain fatty acids on children’s IQ and body mass index at 7 years of age. Pediatrics. 2008;122:e472–9.

    Article  PubMed  Google Scholar 

  53. Hoffman DR, Boettcher JA, Diersen-Schade DA. Toward optimizing vision and cognition in term infants by dietary docosahexaenoic and arachidonic acid supplementation: a review of randomized controlled trials. Prostaglandins Leukot Essent Fatty Acids. 2009;81:151–8.

    Article  CAS  PubMed  Google Scholar 

  54. Molinari C, Rise P, Guerra C, Mauro N, Piani C, Bosi E, Galli C, Scavini M. Eight-week consumption of milk enriched with omega 3 fatty acids raises their blood concentrations yet does not affect lipids and cardiovascular disease risk factors in adult healthy volunteers. Pharma Nutr. 2014;2:141–8.

    CAS  Google Scholar 

  55. Uauy-Dagach R, Mena P. Nutritional role of omega-3 fatty acids during the perinatal period. Clin Perinatol. 1995;22(1):157–75.

    CAS  PubMed  Google Scholar 

  56. Ganapathy S. Long chain polyunsaturated fatty acids and immunity in infants. Indian Pediatr. 2009;46(9):785–90.

    PubMed  Google Scholar 

  57. Brenna JT, Varamini B, Jensen RG, Diersen-Schade DA, Boettcher JA, Arterburn LM. Docosahexaenoic and arachidonic acid concentrations in human breast milk worldwide. Am J Clin Nutr. 2007;85(6):1457–64.

    CAS  PubMed  Google Scholar 

  58. Benito P, Caballero J, Moreno J, Gutiérrez-Alcántara C, Muñoz C, Rojo G, Garcia S, Soriguer FC. Effects of milk enriched with ω-3 fatty acid, oleic acid and folic acid in patients with metabolic syndrome. Clin Nutr. 2006;25:581–7.

    Article  CAS  PubMed  Google Scholar 

  59. Baro L, Fonollá J, Peña JL, Martínez-Férez A, Lucena A, Jiménez J, Boza JJ, López-Huertas E. n-3 Fatty acids plus oleic acid and vitamin supplemented milk consumption reduces total and LDL cholesterol, homocysteine and levels of endothelial adhesion molecules in healthy humans. Clin Nutr. 2003;22(2):175–82.

    Article  CAS  PubMed  Google Scholar 

  60. Lopez-Huertas E. Health effects of oleic acid and long chain omega-3 fatty acids (EPA and DHA) enriched milks. A review of intervention studies. Pharmacol Res. 2010;61(3):200–7.

    Article  CAS  PubMed  Google Scholar 

  61. Dangat KD, Kale AA, Joshi SR. Maternal supplementation of omega 3 fatty acids to micronutrient-imbalanced diet improves lactation in rat. Metabolism. 2011;60(9):1318–24.

    Article  CAS  PubMed  Google Scholar 

  62. Carrero JJ, Baro L, Fonolla J, Gonzalez-Santiago M, Martinez-Ferez A, Castillo R, Jimenez J, Boza JJ, Lopez-Huertas E. Cardiovascular effects of milk enriched with omega-3 polyunsaturated fatty acids, oleic acid, folic acid, and vitamins E and B6 in volunteers with mild hyperlipidemia. Nutrition. 2004;20(6):521–7.

    Article  CAS  PubMed  Google Scholar 

  63. Padro T, Vilahur G, Sanchez-Hernandez J, Hernandez M, Antonijoan RM, Perez A, Badimon L. Lipidomic changes of LDL in overweight and moderately hypercholesterolemic subjects taking phytosterol- andomega-3-supplemented milk. J Lipid Res. 2015;56(5):1043–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Visioli F, Rise P, Plasmati E, Pazzucconi F, Sirtori CR, Galli C. Very low intakes of N-3 fatty acids incorporated into bovine milk reduce plasma triacylglycerol and increase HDL-cholesterol concentrations in healthy subjects. Pharmacol Res. 2000;41(5):571–6.

    Article  CAS  PubMed  Google Scholar 

  65. Fonolla J, López-Huertas E, Machado FJ, Molina D, Alvarez I, Mármol E, Navas M, Palacín E, García-Valls MJ, Remón B, Boza JJ, Marti JL. Milk enriched with “healthy fatty acids” improves cardiovascular risk markers and nutritional status in human volunteers. Nutrition. 2009;25(4):408–14.

    Article  CAS  PubMed  Google Scholar 

  66. Garaiova I, Guschina IA, Plummer NT. A randomised cross-over trial in healthy adults indicating improved absorption of omega-3 fatty acids by pre-emulsification. Nutr J. 2007;6:4.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anand Arvind Zanwar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zanwar, A.A., Badhe, Y.S., Bodhankar, S.L., Ghorpade, P.B., Hegde, M.V. (2016). Omega-3 Milk. In: Hegde, M., Zanwar, A., Adekar, S. (eds) Omega-3 Fatty Acids. Springer, Cham. https://doi.org/10.1007/978-3-319-40458-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40458-5_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40456-1

  • Online ISBN: 978-3-319-40458-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics