Skip to main content

In a Western Dietary Context Excess Oxidised Linoleic Acid of Dietary and Endogenous Origin by Over-Activation of PPAR Gamma so Immune and Inflammatory Pathways, and through Cardiolipin Damage, Increases Cardiovascular Risk

  • Chapter
  • First Online:
Book cover Omega-3 Fatty Acids

Abstract

The heart, an organ with high ATP requirements, derives 70 % of its energy from fats, primarily delivered by LDL in the fasted state and chylomicrons in the fed state. The primary ‘cause’ of cardiovascular disease is not pure dietary ‘saturated’ fats per se, although excessively oxidised linoleic acid (LA)-rich non-ruminant animal so-called ‘saturated’ fats may well be significant factors, but is arguably due to a mixture of: excess Omega 6 LA intake within the context of a nutrient including antioxidant depleted pre-oxidised western diet, raised plasma oxidative stress including of LDL, damage to cardiolipin species and consequent release of LA oxylipins including 9- and 13-HODE 4-HNE and MDA so increased oxidised stress, consequential and wider oxidative stress related damage to mitochondria including their DNA, hence reduction in cardiac mitochondrial energy output; excess LA oxylipins of dietary and endogenous origin leading to consequent overactivation of oxidised LDL receptors and PPAR gamma pathways, so excess inflammation and immune activation including of iNOS hence raised peroxisomal peroxide-related oxidative stress; PPAR gamma activation by LA HODEs including 9 and 13 HODE and resultant PPAR gamma-related shunting of peroxisomal beta-oxidation product ACoA to lipid and cholesterol production and deposition rather than mitochondrial energy substrate production; and lack of PPAR alpha activation through exercise, fasting, or to a lesser extent by omega 3s, of mitochondrial energy substrate production-related pathways, combined with consequent damage to cell tissue as well as mitochondria, so energy inhibition and resultant malfunction including; inflammation, tissue destruction, and macrophage foam cell related and wider intra and inter-cellular lipid deposition; all facilitated by pre-oxidised excessively refined nutrient and antioxidant depleted, AGE and cross-linked protein, oxidised lipid product-rich, LA ALA-imbalanced, ‘Western’ diets, combined with constant food accessibility, exacerbated by lack of intermeal ‘fasting’ and energy expenditure including exercise.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AA:

Arachidonic acid (Omega 6; 20 carbon derivative of LA)

ACOX1:

Acyl-CoA oxidase (First step in peroxisomal beta-oxidation)

ACoA:

Acetyl coenzyme A (Raw material for the energy/cholesterol pathways)

AGE:

Advanced glycation end product (Non-enzymatic covalently bound sugar to protein or lipid)

ALA:

Alpha-linolenic acid (Omega 3; 18 carbon plant-based polyunsaturated fat)

APOE:

Apolipoprotein E (Lipid transport signature protein)

ATP:

Adenosine triphosphate (Enzyme used as an energy carrier)

CD36:

Cluster of differentiation 36 (Fatty acid translocase receptor)

COX:

Cyclooxygenase (Enzyme-catalysing oxidation of fatty acids)

CoQ10:

Ubiquinol (Fat-soluble component of mitochondrial electron transport)

CPT1:

Carnitine palmitoyl-transferase (Acts as shuttle mainly for long-chain fats C:16–18 into mitochondria)

DHA:

Docosahexaenoic acid (Omega 3; 22 carbon derivative of ALA)

EPA:

Eicosapentaenoic acid (Omega 3 fatty acid C20:5)

iNOS:

Inducible nitric oxide synthase (Inducible isoform involved in stress response in macrophages microglia and other tissues)

LA:

Linoleic acid (Omega 6; 18 carbon plant-based polyunsaturated fat)

LOX5:

Lipoxygenase (Enzyme-catalysing oxidation including AA and EPA)

LOX12/15:

Lipoxygenases (Enzyme-catalysing oxidation of multiple lipid-based substrates)

LDLR:

Low-Density Lipoprotein (LDL) Receptor (LDL receptor for minimally oxidised LDL)

LPL:

Lipoprotein lipase (Mobilises lipids from chylomicrons, VLDL, LDL both at the vascular face and intercellularly)

MDA:

Malonaldehyde (Non-exclusive oxidation product of omega 6)

MCT :

Medium chain triglyceride (Triglyceride containing fats between C6 and C12)

MCF:

Medium chain fatty acids (Fatty acids between C6 and C12)

MUFA:

Monosaturated Fatty Acid (Monosaturated fatty acid)

NAFLD:

Non-alcoholic fatty liver (Fat deposition in the liver not due to alcohol)

NO:

Nitric oxide (An important signalling messenger and oxidant)

OA:

Oleic acid (Omega 9 monosaturated fat C18:1)

OLR1:

Oxidised LDL receptor 1 (Receptor for oxidised LDL sometimes called LOX1)

Oxo-HODE:

Oxooctadecadienoic acid (Oxidation products of HODEs also called KODEs)

PA:

Palmitic Acid (Saturated fat C:16)

PPAR:

Peroxisome proliferator-activated receptor (3 forms alpha, gamma and delta)

P450:

Cytochromes P450 (Family of often oxidative enzymes)

PUFA:

Polyunsaturated fatty acid (Polyunsaturated Fatty Acid)

SA:

Stearic Acid (Saturated fat C:18)

SFA:

Saturated Fatty Acid (Saturated Fatty Acid)

SCD1:

Stearoyl-CoA desaturase (Delta-9-desaturase so key to formation of OA)

SN2:

SN2 position (Location of fat in triglycerides or phospholipids)

VEGF:

Vascular endothelial growth factor (A protein signalling angiogenesis)

Wy14643:

PPAR alpha activator (Activates PPAR alpha-related peroxisomes)

4-HNE:

4-Hydroxynonenal (Exclusive omega 6 fats peroxidation aldehyde)

9-HODE:

9-hydroxy-10E, 12Z-octadecadienoic acid (Major LA oxidation product of LOX12/15, COX, photo-oxidation and auto-oxidation)

13-HODE:

13-hydroxy-9Z, 11E-octadecadienoic acid (Major LA oxidation product of LOX12/15, COX photo-oxidation and auto-oxidation)

13-HOTE:

13-OH-9Z, 11E, 15Z-octadecatrienoic acid (Major ALA oxidation equivalent of LA product 13-HODE)

15-HETE:

15-hydroxy-eicosatetraenoic acid (Major AA LOX15 oxidation product)

15d-PGJ2:

(15-deoxy-Δ12, 14-Prostaglandin J2 (Downstream AA COX2 oxidation product and PPAR gamma activator)

References

  1. Grootveld M, Atherton M, Sheerin A, Hawkes J, Blake D, Richens T, Silwood C, Lynch E, Claxson A. In vivo absorption, metabolism, and urinary excretion of alpha, beta-unsaturated aldehydes in experimental animals. J Clin Invest. 1998;101:1210–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ramırez M, Amate L, Gil A. Absorption and distribution of dietary fatty acids from different sources. Early Human Dev. 2001;65(Suppl):S95–101.

    Article  Google Scholar 

  3. Carlier B. Absorption and intestinal catabolism of fatty acids in the rat: effect of chain length and unsaturation. doi:10.1113/expphysiol.1991.sp003511.

    Google Scholar 

  4. Carlier H, Bernard A, Caselli C. Digestion and absorption of polyunsaturated fatty acids. Re-prod Nutr Dev. 1991;31(5):475–500. hal-00899466 (EDP sciences).

    Google Scholar 

  5. Staprans I, Pan X, Rapp J, Feingold K. Oxidized cholesterol in the diet is a source of oxidized lipoproteins in human serum. J Lipid Res. 2003;44(4):705–15.

    Article  CAS  PubMed  Google Scholar 

  6. Barrowman J. Physiology of the gastro-intestinal lymphatic system. Cambridge University Press; 1978. ISBN 0521217105 (Physiological Social Monograph).

    Google Scholar 

  7. Couëdelo L, Boué-Vaysse C, Fonseca L, Montesinos E, Djoukitch S, Combe N, Cansell M. Lymphatic absorption of α-linolenic acid in rats fed flaxseed oil-based emulsion. Br J Nutr. 2011;105(7):1026–35.

    Article  PubMed  CAS  Google Scholar 

  8. Felinski L, Garton G, Lough A, Phillipsont A. Lipids of sheep lymph transport from the intestine. Biochem J. 1964;90:154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tso P, Ding K, DeMichele S, Huang Y. Intestinal absorption and lymphatic transport of a high gamma-linolenic acid canola oil in lymph fistula sprague-dawley rats. Nutrition. 2002;132:218–21.

    Google Scholar 

  10. Kratz M, Cullen P, Kannenberg F, Kassner A, Fobker M, Abuja PM, Assmann G, Wahrburg U. Effects of dietary fatty acids on the composition and oxidizability of low-density lipoprotein. Eur J Clin Nutr. 2002;56(1):72–81.

    Article  CAS  PubMed  Google Scholar 

  11. Amate L, Gil A, Ramírez M. Feeding infant piglets formula with long-chain polyunsaturated fatty acids as triacylglycerols or phospholipids influences the distribution of these fatty acids in plasma lipoprotein fractions. J Nutr. 2001;131(4):1250–5.

    CAS  PubMed  Google Scholar 

  12. The ACOS lipid library. http://lipidlibrary.aocs.org/Lipids/pc/index.htm.

  13. Camont L, Lhomme M, Rached F, Le Goff W, Nègre-Salvayre A, Salvayre R, Calzada C, Lagarde M, Chapman M, Kontush A. Small, dense high-density lipoprotein-3 particles are enriched in negatively charged phospholipids: relevance to cellular cholesterol efflux, antioxidative, antithrombotic, anti-inflammatory, and antiapoptotic functionalities. Arterioscler Thromb Vasc Biol. 2013;33(12):2715–23.

    Article  CAS  PubMed  Google Scholar 

  14. Tall A, Green P, Glickman R, Riley J. Metabolic fate of chylomicron phospholipids and apoproteins in the rat. J Clin Invest. 1979;64(4):977–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Margetak C, Travis G, Entz T, Mir S, Wei S, Dodson M. Fatty acid composition of phospholipids and in the central and external positions of triacylglycerol in muscle and subcutaneous fat of beef steers fed diets supplemented with oil containing n6 and n3 fatty acids while undergoing one of three 48 h feed withdrawal treatments. http://dx.doi.org/10.1155/2012/543784.

  16. Hunter K, Crosbie L, Horgan G, Miller G, Dutta-Roy A. Effect of diets rich in oleic acid, stearic acid and linoleic acid on postprandial haemostatic factors in young healthy men. Br J Nutr. 2001;86(2):207–15.

    CAS  PubMed  Google Scholar 

  17. Adam O, Wolfram G, Zollner N. Effect of alpha-linolenic acid in the human diet on linoleic acid metabolism and prostaglandin biosynthesis. J Lipid Res. 1986;27.

    Google Scholar 

  18. Yao Z, Vance D. The active synthesis of phosphatidylcholine is required for very low density lipoprotein secretion from rat hepatocytes. J Biol Chem. 1988;263(6):2998–3004.

    CAS  PubMed  Google Scholar 

  19. Yoshida Y, Itoh N, Hayakawa M, Habuchi Y, Inoue R, Chen Z, Cao J, Cynshi O, Niki E. Lipid peroxidation in mice fed a choline-deficient diet as evaluated by total hydroxyoctadecadienoic acid. Nutrition. 2006;22(3):303–11.

    Article  CAS  PubMed  Google Scholar 

  20. Caballero F, Fernández A, Matías N, Martínez L, Fucho R, Elena M, Caballeria J, Morales A, Fernández-Checa J, García-Ruiz C. Specific contribution of methionine and choline in nutritional nonalcoholic steatohepatitis: impact on mitochondrial S-adenosyl-L-methionine and glutathione. J Biol Chem. 2010;285(24):18528–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Innis S, Davidson A, Melynk S, James S. Choline-related supplements improve abnormal plasma methionine-homocysteine metabolites and glutathione status in children with cystic fibrosis. Am J Clin Nutr. 2007;85(3):702–8.

    CAS  PubMed  Google Scholar 

  22. Zeisel S, da Costa K. Choline: an essential nutrient for public health. Nutr Rev. 2009;67(11):615–23.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Hexsel D, Serra M, Mazzuco R, Dal’Forno T, Zechmeister D. Phosphatidylcholine in the treatment of localized fat. J Drugs Dermatol. 2003;2(5):511–8.

    PubMed  Google Scholar 

  24. Amber K, Ovadia S, Camacho I. Injection therapy for the management of superficial subcutaneous lipomas. J Clin Aesthet Dermatol. 2014;7(6):46–8.

    PubMed  PubMed Central  Google Scholar 

  25. Park E, Kim H, Kim M, Oh H. Histological changes after treatment for localized fat deposits with phosphatidylcholine and sodium deoxycholate. J Cosmet Dermatol. 2013;12(3):240–3.

    Article  PubMed  Google Scholar 

  26. Stumpf P. Lipids: structure and function: the biochemistry of plants. Elsevier Science; 2014. p. 328.1483220346.

    Google Scholar 

  27. Herrmann A, Devaux P. Transmembrane dynamics of lipids. 1 ed. Wiley; 2011. p. 53. 0470388455.

    Google Scholar 

  28. Chen S, Subbaiah P. Phospholipid and fatty acid specificity of endothelial lipase: potential role of the enzyme in the delivery of docosahexaenoic acid (DHA) to tissues. 2007. 10.1016/j.bbalip.2007.08.001.

  29. Glycosyldiacylglycerols and Related Lipids from Animals. The AOCS lipid Library. http://lipidlibrary.aocs.org/Lipids/gdg_anim/index.htm.

  30. Johnston P, Roots B. Nerve membranes: a study of the biological and chemical aspects of neuron–glia relationships. vol. 36. International series of monographs in pure and applied biology, zoology division. Pergamon Press; 1972.

    Google Scholar 

  31. Dupree J, Suzuki K, Popko B. Galactolipids in the formation and function of the myelin sheath. Microsc Res Tech. 1998;41(5):431–40.

    Article  CAS  PubMed  Google Scholar 

  32. Brossard N, Croset M, Normand S, Pousin J, Lecerf J, Laville M, Tayot J, Lagarde M. Human plasma albumin transports [13C]docosahexaenoic acid in two lipid forms to blood cells. J Lipid Res. 1997;38(8):1571–82.

    CAS  PubMed  Google Scholar 

  33. Edwards I, Berquin I, Sun H, O’flaherty J, Daniel L, Thomas M, L Rudel, Wykle R, Chen Y. Differential effects of delivery of omega-3 fatty acids to human cancer cells by low-density lipoproteins versus albumin. Clin Cancer Res. 2004;10(24):8275–83.

    Article  CAS  PubMed  Google Scholar 

  34. Kim S, Yang W, Park J. Role of hypoalbuminemia in the genesis of cardiovascular disease in dialysis patients. Perit Dial Int. 1999;19(Suppl 2):S144–9.

    PubMed  Google Scholar 

  35. van der Vusse G. Albumin as fatty acid transporter. Drug Metab Pharmacokinet. 2009;24(4):300–7.

    Article  PubMed  Google Scholar 

  36. Griffon N, Budreck E, Long C, Broedl U, Marchadier D, Glick J, Rader D. Substrate specificity of lipoprotein lipase and endothelial lipase: studies of lid chimeras. J Lipid Res. 2006;47:1803–11.

    Article  CAS  PubMed  Google Scholar 

  37. Hennig B, Watkins B. Linoleic acid and linolenic acid: effect on permeability properties of cultured endothelial cell monolayers. Am J Clin Nutr. 1989;49(2):301–5.

    Google Scholar 

  38. Ek-Von Mentzer B, Zhang F, Hamilton J. Binding of 13-HODE and 15-HETE to phospholipid bilayers, albumin, and intracellular fatty acid binding proteins, implications for transmembrane and intracellular transport and for protection from lipid peroxidation. J Biol Chem. 2001;276(19):15575–80 (Epub 2001 Jan 30).

    Google Scholar 

  39. Yamazaki E, Inagaki M, Kurita O, Inoue T. Kinetics of fatty acid binding ability of glycated human serum albumin. J Biosci. 2005;30(4):475–81.

    Article  CAS  PubMed  Google Scholar 

  40. Banerji B, Subbaiah P, Gregg R, Bagdade J. Molecular species of phosphatidylcholine in abetalipoproteinemia: effect of lecithin: cholesterol acyltransferase and lysolecithin acyltransferase. Lipid Res. 1989;30:1907–16.

    CAS  Google Scholar 

  41. Fernandez M, West K. Mechanisms by which dietary fatty acids modulate plasma lipids. J Nutr. 2005;135(9):2075–8.

    Google Scholar 

  42. Pettinelli P, Videla L. Up-regulation of PPAR-gamma mRNA expression in the liver of obese patients: an additional reinforcing lipogenic mechanism to SREBP-1c induction. J Clin Endocrinol Metab. 2011;96(5):1424–30.

    Article  CAS  PubMed  Google Scholar 

  43. Feldstein A, Lopez R, Tamimi T, Yerian L, Chung Y, Berk M, Zhang R, McIntyre T, Hazen S. Mass spectrometric profiling of oxidized lipid products in human nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. J Lipid Res. 2010;51(10):3046–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Schadinger S, Bucher N, Schreiber B, Farmer S. PPARgamma2 regulates lipogenesis and lipid accumulation in steatotic hepatocytes. Am J Physiol Endocrinol Metab. 2005;288(6):E1195–205.

    Article  CAS  PubMed  Google Scholar 

  45. Matsusue K, Haluzik M, Lambert G, Yim S, Gavrilova O, Ward J, Brewer B Jr, Reitman M, Gonzalez F. Liver-specific disruption of PPARgamma in leptin-deficient mice improves fatty liver but aggravates diabetic phenotypes. J Clin Invest. 2003;111(5):737–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Faust P, Kovacs W. Cholesterol biosynthesis and ER stress in peroxisome deficiency. Biochimie. 2014;98:75–85. doi:10.1016/j.biochi.2013.10.019 Epub 2013 Nov 7.

    Article  CAS  PubMed  Google Scholar 

  47. Kovacs W, Shackelford J, Tape K, Richards M, Faust P, Fliesler S, Krisans S. Disturbed cholesterol homeostasis in a peroxisome-deficient PEX2 knockout mouse model. Mol Cell Biol. 2004;24(1):1–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Baker A, Malur A, Barna B, Kavuru M, Malur A, Thomassen M. PPARgamma regulates the expression of cholesterol metabolism genes in alveolar macrophages. Biochem Biophys Res Commun. 2010;393(4):682–7.

    Article  CAS  PubMed  Google Scholar 

  49. Souza-Mello V. Peroxisome proliferator-activated receptors as targets to treat non-alcoholic fatty liver disease. World J Hepatol. 2015;7(8):1012–9.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Hashimoto T, Cook W, Qi C, Yeldandi A, Reddy J, Rao M. Defect in peroxisome proliferator-activated receptor alpha-inducible fatty acid oxidation determines the severity of hepatic steatosis in response to fasting. J Biol Chem. 2000;275(37):28918–28.

    Article  CAS  PubMed  Google Scholar 

  51. Abdelmegeed M, Yoo S, Henderson L, Gonzalez F, Woodcroft K, Song B. PPARalpha expression protects male mice from high fat-induced nonalcoholic fatty liver. J Nutr. 2011;141(4):603–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Mustad V, Ellsworth J, Cooper A, Kris-Etherton P, Etherton T. Dietary linoleic acid increases and palmitic acid decreases hepatic LDL receptor protein and mRNA abundance in young pigs. J Lipid Res. 1996;37(11):2310–23.

    CAS  PubMed  Google Scholar 

  53. Maingrette F, Renier G. Linoleic acid increases lectin-like oxidized LDL receptor-1 (LOX-1) expression in human aortic endothelial cells. Diabetes. 2005;54:1506–13.

    Article  CAS  PubMed  Google Scholar 

  54. Clifton P, Nestel P. Influence of gender, body mass index, and age on response of plasma lipids to dietary fat plus cholesterol. Arterioscler Thromb. 1992;12(8):955–62.

    Article  CAS  PubMed  Google Scholar 

  55. Pepe G, Albrecht E. Central integrative role of oestrogen in the regulation of placental steroidogenic maturation and the development of the fetal pituitary-adrenocortical axis in the baboon. Hum Reprod Update. 1998;4(4):406–19.

    Google Scholar 

  56. Ramsden C, Ringel A, Feldstein A, Taha A, MacIntosh B, Hibbeln J, Majchrzak-Hong S, Faurot K, Rapoport S, Cheon Y, Chung Y, Berk M, Mann J. Lowering dietary linoleic acid reduces bioactive oxidized linoleic acid metabolites in humans. Prostaglandins Leukot Essent Fatty Acids. 2012;87(4–5):135–41.

    Google Scholar 

  57. Stein D, Stevenson B, Chester M, Basit M, Daniels M, Turley S, McGarry J. The insulinotropic potency of fatty acids is influenced profoundly by their chain length and degree of saturation. J Clin Invest. 1997;100(2):398–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Mohrhauer H, Holman R. The effect of dose level of essential fatty acids upon fatty acid composition of the rat liver. J Lipid Res. 1963;4:151–9.

    CAS  PubMed  Google Scholar 

  59. Gottenbos J. The atherogenic effect of different cholesterol esters. In: Hauvast J, Hermus R, VanDer Haar F, editors. From blood and arterial wall in atherogenesis and arterial thrombosis. IFMA scientific symposia no 4. The Hague 11/12 1974.

    Google Scholar 

  60. Psychogios N, Hau D, Peng J, Guo A, Mandal R, Bouatra S, Sinelnikov I, Krishnamurthy R, Eisner R, Gautam B, Young N, Xia J, Knox C, Dong E, Huang P, Hollander Z, Pedersen T, Smith S, Bamforth F, Greiner R, McManus B, Newman J, Goodfriend T, Wishart D, Flower D. The human serum metabolome. PLoS ONE. 2011;6(2):e16957.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Sandker G, Kromhout D, Aravanis C, Bloemberg B, Mensink R, Karalias N, Katan M. Serum cholesteryl ester fatty acids and their relation with serum lipids in elderly men in Crete and The Netherlands. Eur J Clin Nutr. 1993;47(3):201–8.

    CAS  PubMed  Google Scholar 

  62. Lindeberg S, Nilsson-Ehle P, and Vessby B. Lipoprotein composition and serum cholesterol ester fatty acids in nonwesternized melanesians. Lipids. 1996;31(2).

    Google Scholar 

  63. Dyerberg J, Bang H, Hjorne N. Fatty acid composition of the plasma lipids in Greenland Eskimos. Am J Clin Nutr. 1975;28(9):958–66.

    CAS  PubMed  Google Scholar 

  64. Lands W. Fish omega-3 and human health. 2nd ed. AOCS press; 2005. ISBN 1-893997-81-2.

    Google Scholar 

  65. Zock P, Mensink R, Harryvan J, de Vries J, Katan M. Fatty acids in serum cholesteryl esters as quantitative biomarkers of dietary intake in humans. Am J Epidemiol. 1997;145(12).

    Google Scholar 

  66. Volk B, Kunces L, Freidenreich D, Kupchak B, Saenz C, Artistizabal J, Fernandez M, Bruno R, Maresh C, Kraemer W, Phinney S, Volek J. Effects of step-wise increases in dietary carbohydrate on circulating saturated fatty acids and palmitoleic acid in adults with metabolic syndrome. doi:10.1371/journal.pone.0113605.

    Google Scholar 

  67. Siguel E, Chee K, Gong J, Schaefer E. Criteria for essential fatty acid deficiency in plasma as assessed by capillary column gas-liquid chromatography. Clin Chem. 1987;33(10):1869–73.

    CAS  PubMed  Google Scholar 

  68. Behrend A, Harding C, Shoemaker J, Matern D, Sahn D, Elliot D, Gillingham M. Substrate oxidation and cardiac performance during exercise in disorders of long chain fatty acid oxidation. Mol Genet Metab. 2012;105(1):110–5.

    Article  CAS  PubMed  Google Scholar 

  69. Nagao K, Yanagita T. Medium-chain fatty acids: functional lipids for the prevention and treatment of the metabolic syndrome. Pharmacol Res. 2010;61(3):208–12.

    Article  CAS  PubMed  Google Scholar 

  70. Colasante C, Chen J, Ahlemeyer B, Baumgart-Vogt E. Peroxisomes in cardiomyocytes and the peroxisome/peroxisome proliferator-activated receptor-loop. Thromb Haemost. 2015 Mar;113(3):452–63.

    Google Scholar 

  71. Lee W, Kim J. Peroxisome proliferator-activated receptors and the heart: lessons from the past and future directions. PPAR Res. 2015;2015, Article ID 271983.

    Google Scholar 

  72. Gilde A, Fruchart J, Staels B. Peroxisome proliferator-activated receptors at the crossroads of obesity, diabetes, and cardiovascular disease. doi:10.1016/j.jacc.2006.04.097.

    Google Scholar 

  73. Son N, Park T, Yamashita H, Yokoyama M, Huggins LA, Okajima K, Homma S, Szabolcs M, Huang L, Goldberg I. Cardiomyocyte expression of PPARgamma leads to cardiac dysfunction in mice. J Clin Invest. 2007;117(10):2791–801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Harvie M, Pegington M, Mattson M, Frystyk J, Dillon B, Evans G, Cuzick J, Jebb S, Martin B, Cutler R, Son T, Maudsley S, Carlson O, Egan J, Flyvbjerg A, Howell A. The effects of intermittent or continuous energy restriction on weight loss and metabolic disease risk markers: a randomized trial in young overweight women. Int J Obes (Lond). 2011;35(5):714–27.

    Article  CAS  Google Scholar 

  75. Johnson J, Summer W, Cutler R, Martin B, Hyun D, Dixit V, Pearson M, Nassar M, Telljohann R, Maudsley S, Carlson O, John S, Laub D, Mattson M. Alternate day calorie restriction improves clinical findings and reduces markers of oxidative stress and inflammation in overweight adults with moderate asthma. Free Radic Biol Med. 2007;42(5):665–74.

    Article  CAS  PubMed  Google Scholar 

  76. Keogh J, Pedersen E, Petersen K, Clifton P. Effects of intermittent compared to continuous energy restriction on short-term weight loss and long-term weight loss maintenance. Clin Obes. 2014;4(3):150–6.

    Article  CAS  PubMed  Google Scholar 

  77. Augustus A, Kako Y, Yagyu H, Goldberg I. Routes of FA delivery to cardiac muscle: modulation of lipoprotein lipolysis alters uptake of TG-derived FA. Am J Physiol Endocrinol Metab. 2003;284(2):E331–9 Epub 2002 Oct 15.

    Article  CAS  PubMed  Google Scholar 

  78. Niu Y, Evans R. Very-low-density lipoprotein: complex particles in cardiac energy metabolism. http://dx.doi.org/10.1155/2011/189876.

  79. Drosatos K, Goldberg I. Lipoproteins: a source of cardiac lipids. doi 10.1007/978-1-4939-1227-8_2.

  80. Smith B, Jain S, Rimbaud S, Dam A, Quadrilatero J, Ventura-Clapier R, Bonen A, Holloway G. FAT/CD36 is located on the outer mitochondrial membrane, upstream of long-chain acyl-CoA synthetase, and regulates palmitate oxidation. Biochem J. 2011;437(1):125–34. doi:10.1042/BJ20101861.

    Article  CAS  PubMed  Google Scholar 

  81. Campbell SE, Tandon N, Woldegiorgis G, Luiken J, Glatz J Bonen A. A novel function for fatty acid translocase (fat)/cd36 involvement in long chain fatty acid transfer into the mitochondria. J Biol Chem. 2004;279(35):36235–41.

    Google Scholar 

  82. Calvo D, Gómez-Coronado D, Suárez Y, Lasunción M, Vega M. Human CD36 is a high affinity receptor for the native lipoproteins HDL, LDL, and VLDL. J Lipid Res. 1998;39:777–88.

    CAS  PubMed  Google Scholar 

  83. Brinkmann J, Abumrad N, Ibrahimi A, van der Vusse G, Glatz J. New insights into long-chain fatty acid uptake by heart muscle: a crucial role for fatty acid translocase/CD36. Biochem J. 2002;367(Pt 3):561–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Duncan J, Bharadwaj K, Fong J, Mitra R, Sambandam N, Courtois M, Lavine K, Goldberg I, Kelly D. Rescue of cardiomyopathy in peroxisome proliferator-activated receptor-alpha transgenic mice by deletion of lipoprotein lipase identifies sources of cardiac lipids and peroxisome proliferator-activated receptor-alpha activators. Circulation. 2010;121(3):426–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Hames K, Vella A, Kemp B, Jensen M. Free fatty acid uptake in humans with CD36 deficiency. Diabetes. 2014;63(11):3606–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Lewin T, Coleman R. Regulation of myocardial triacylglycerol synthesis and metabolism. Biochim Biophys Acta. 2003;1634(3):63–75.

    Article  CAS  PubMed  Google Scholar 

  87. Collot-Teixeira S, Martin J, McDermott-Roe C, Poston R, McGregor J. CD36 and macrophages in atherosclerosis. Cardiovasc Res. 2007;75(3):468–77.

    Article  CAS  PubMed  Google Scholar 

  88. Honjo M, Nakamura K, Yamashiro K, Kiryu J, Tanihara H, McEvoy L, Honda Y, Butcher E, Masaki T, Sawamura T. Lectin-like oxidized LDL receptor-1 is a cell-adhesion molecule involved in endotoxin-induced inflammation. doi:10.1073/pnas.0337528100.

    Google Scholar 

  89. Christ A, Latz E. LOX-1 and mitochondria: an inflammatory relationship. doi:http://dx.doi.org/10.1093/cvr/cvu187.

    Google Scholar 

  90. Misaka T, Suzuki S, Sakamoto N, Yamaki T, Sugimoto K, Kunii H, Nakazato K, Saitoh S, Sawamura T, Ishibashi T, Takeishi Y. Significance of soluble lectin-like oxidized LDL receptor-1 levels in systemic and coronary circulation in acute coronary syndrome. http://dx.doi.org/10.1155/2014/649185.

  91. Baranova I, Kurlander R, Bocharov A, Vishnyakova T, Chen Z, Remaley A, Csako G, Patterson A, Eggerman T. Role of human CD36 in bacterial recognition, phagocytosis, and pathogen-induced JNK-mediated signaling. doi:10.4049/jimmunol.181.10.7147.

    Google Scholar 

  92. Silverstein R. Febbraio M. CD36, a scavenger receptor involved in immunity, metabolism, angiogenesis, and behavior. Sci Signal. 2009;2(72): re3.

    Google Scholar 

  93. da Rocha Junior L, Dantas A, Duarte A, de Melo Rego M, Pitta Ida R, Pitta M. PPAR agonists in adaptive immunity: what do immune disorders and their models have to tell us? http://dx.doi.org/10.1155/2013/519724.

  94. Rotondo D, Davidson J. Prostaglandin and PPAR control of immune cell function. Immunology. 2002;105(1):20–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Hultin M, Savonen R, Olivecronal T. Chylomicron metabolism in rats: lipolysis, recirculation of triglyceride-derived fatty acids in plasma FFA, and fate of core lipids as analyzed by compartmental modelling. J. Lipid Res. Volume 1996;37.

    Google Scholar 

  96. Augustus A, Yagyu H, Haemmerle G, Bensadoun A, Vikramadithyan R, Park S, Kim J, Zechner R, Goldberg I. Cardiac-specific knock-out of lipoprotein lipase alters plasma lipoprotein triglyceride metabolism and cardiac gene expression. doi:10.1074/jbc.M401028200.

    Google Scholar 

  97. Basta G, Schmidt A, Caterina R. Advanced glycation end products and vascular inflammation: implications for accelerated atherosclerosis in diabetes. Cardiovasc Res. 2004;63:582–92.

    Article  CAS  PubMed  Google Scholar 

  98. Khaidakov M, Mitra S, Wang X, Ding Z, Bora N, Lyzogubov V, Romeo F, Schichman S, Mehta J. Large impact of low concentration oxidized LDL on angiogenic potential of human endothelial cells: a microarray study. PLoS ONE. 2012;7(10):e47421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Lee S, Birukov K, Romanoski C, Springstead J, Lusis A, Berliner J. Role of phospholipid oxidation products in atherosclerosis. Circ Res. 2012;111:778–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Levitan I, Volkov S, Subbaiah P. Oxidized LDL: diversity, patterns of recognition, and pathophysiology. Antioxid Redox Signal. 2010;13(1): 39–75.

    Google Scholar 

  101. Ghosh J, Mishra T, Rao Y, Aggarwal S. Oxidised LDL, HDL cholesterol, LDL cholesterol levels in patients of coronary artery disease. Indian J Clin Biochem. 2006;21(1):181–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Scheffer P, Teerlink T, Heine R. Clinical significance of the physicochemical properties of LDL in type 2 diabetes. Diabetologia. 2005;48:808–16.

    Article  CAS  PubMed  Google Scholar 

  103. Ringseis R. Regulation of genes involved in lipid metabolism by dietary oxidized fat. doi:10.1002/mnfr.201000424.

    Google Scholar 

  104. Riemersma R, Armstrong R, Kelly R, Wilson R, editors. Essential fatty acids and eicosanoids: invited papers from the fourth international congress. bioavailability of lipid oxidation products in man. The American Oil Chemists Society; 1998. pp. 202–6.

    Google Scholar 

  105. Staprans I, Rapp J, Pan X, Feingold K. Oxidized lipids in the diet are incorporated by the liver into very low density lipoprotein in rats. J Lipid Res. 1996;37:420–30.

    CAS  PubMed  Google Scholar 

  106. Kayama Y, Minamino T, Toko H, Sakamoto M, Shimizu I, Takahashi H, Okada S, Tateno K, Moriya1 J, Yokoyama M, Nojima A, Yoshimura M, Egashira K, Aburatani H, Komuro I. Cardiac 12/15 lipoxygenase–induced inflammation is involved in heart failure. doi:10.1084/jem.20082596.

    Google Scholar 

  107. Buchanan M, Bertomeu M, Brister S. Haas T.13-hydroxyoctadecadienoic acid (13-HODE) metabolism and endothelial cell adhesion molecule expression: effect on platelet vessel wall adhesion. Wien Klin Wochenschr. 1991;103(14):416–21.

    CAS  PubMed  Google Scholar 

  108. Buchanan M, Crozier G, Haas T. Fatty acid metabolism and the vascular endothelial cell new thoughts about old data. Haemostasis. 1988;18:360–75.

    CAS  PubMed  Google Scholar 

  109. Dobrian A, Lieb D, Cole B, Taylor-Fishwick D, Chakrabarti S, Nadler J. Functional and pathological roles of the 12- and 15-lipoxygenases. Prog Lipid Res. 2011;50(1):115–31.

    Article  CAS  PubMed  Google Scholar 

  110. Inoue M, Itoh H, Tanaka T, Chun T, Doi K, Fukunaga Y, Sawada N, Yamshita J, Masatsugu K, Saito T, Sakaguchi S, Sone M, Yamahara Ki, Yurugi T, Nakao K. Oxidized LDL regulates vascular endothelial growth factor expression in human macrophages and endothelial cells through activation of peroxisome proliferator–activated receptor-γ. Arterioscler Thromb Vasc Biol. 2001;21:560–6.

    Google Scholar 

  111. Yagi, K. Lipid peroxides as agents involved in atherogenesis (Chap. 16). In: Sevanian A, editors. Lipid peroxidation in biological systems. Proceedings of a symposium in Honolulu Hawaii. American Oil Chemists Society; 1988.

    Google Scholar 

  112. Jira W, Spiteller G, Carson W, Schramm A. Strong increase in hydroxy fatty acids derived from linoleic acid in human low density lipoproteins of atherosclerotic patients. Chem Phys Lipids. 1998;91(1):1–11.

    Article  CAS  PubMed  Google Scholar 

  113. Inoue M, Itoh H, Tanaka T, Chun T, Doi K, Fukunaga Y, Sawada N, Yamshita J, Masatsugu K, Saito T, Sakaguchi S, Sone M, Yamahara Ki, Yurugi T, Nakao K. Oxidized LDL regulates vascular endothelial growth factor expression in human macrophages and endothelial cells through activation of peroxisome proliferator–activated receptor-γ. Arterioscler Thromb Vasc Biol. 2001;21:560–6.

    Google Scholar 

  114. Barlic J, Zhang Y, Foley J. Murphy P oxidized lipid-driven chemokine receptor switch, CCR2 to CX3CR1, mediates adhesion of human macrophages to coronary artery smooth muscle cells through a peroxisome proliferator-activated receptor γ–dependent pathway. Circulation. 2006;114:807–19.

    Article  CAS  PubMed  Google Scholar 

  115. Yoshida Y, Niki E. Bio-markers of lipid peroxidation in vivo: hydroxyoctadecadienoic acid and hydroxycholesterol. BioFactors. 2006;27(1–4):195–202.

    Article  CAS  PubMed  Google Scholar 

  116. Lamboni C, Kétévi A, Awaga K, Doh A. A study of heated vegetable oils used by street vendors in frying foods in Lome, Togo. Bull Chem Soc Ethiopia. ISSN: 1011-3924.

    Google Scholar 

  117. Grootveld M, Atherton M, Sheerin A, Hawkes J, Blake D, Richens T, Silwood C, Lynch E, Claxson A. In vivo absorption, metabolism, and urinary excretion of alpha, beta-unsaturated aldehydes in experimental animals. J Clin Invest. 1998;101:1210–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Staprans I, Pan X, Rapp J, Feingold K. The role of dietary oxidized cholesterol and oxidized fatty acids in the development of atherosclerosis. Mol Nutr Food Res. 2005;49(11):1075–82.

    Article  CAS  PubMed  Google Scholar 

  119. Khan-Merchant N, Penumetcha M, Meilhac O, Parthasarathy S. Oxidized fatty acids promote atherosclerosis only in the presence of dietary cholesterol in low-density lipoprotein receptor knockout mice. J Nutr. 2002;132(11):3256–62.

    CAS  PubMed  Google Scholar 

  120. Kratz M, Cullen P, Kannenberg F, Kassner A, Fobker M, Abuja PM, Assmann G, Wahrburg U. Effects of dietary fatty acids on the composition and oxidizability of low-density lipoprotein. Eur J Clin Nutr. 2002;56(1):72–81 (See Diag. 2).

    Article  CAS  PubMed  Google Scholar 

  121. Rapp J, Connor W, Lin D, Inahara T, Porter J. Lipids of human atherosclerotic plaques and xanthomas: clues to the mechanism of plaque progression. J Lipid Res. 1983;24:1329–35.

    CAS  PubMed  Google Scholar 

  122. Katz K, Shipley G, Small D. Physical chemistry of the lipids of human atherosclerotic lesions. Demonstration of a lesion intermediate between fatty streaks and advanced plaques. J Clin Invest. 1976;58(1):200–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Folcik V, Nivar-Aristy R, Krajewski L, Cathcart M. Lipoxygenase contributes to the oxidation of lipids in human atherosclerotic plaques. J Clin Invest. 1995;96(1):504–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Brooks C, Harland W, Steel G. Squalene, 26-hydroxycholesterol and 7-ketocholesterol in human atheromatous plaques, pp. 620–2. doi:10.1016/0005-2760(66)90055-5.

    Google Scholar 

  125. Hughes H, Mathews B, Lenz M, Guyton J. Cytotoxicity of oxidized LDL to porcine aortic smooth muscle cells is associated with the oxysterols 7-ketocholesterol and 7-hydroxycholesterol. doi:10.1161/01.ATV.14.7.1177.

    Google Scholar 

  126. Vangaveti V, Baune B, Kennedy R. Hydroxyoctadecadienoic acids: novel regulators of macrophage differentiation and atherogenesis. Ther Adv Endocrinol Metab. 2010;1(2):51–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Nagy L, Tontonoz P, Alvarez J, Chen H, Evans R. Oxidized LDL regulates macrophage gene expression through ligand activation of PPAR gamma. Cell. 1998;93:229–40.

    Google Scholar 

  128. Gniwotta C, Morrow J, Roberts L 2nd, Kühn H. Prostaglandin F2-like compounds, F2-isoprostanes, are present in increased amounts in human atherosclerotic lesions. Arterioscler Thromb Vasc Biol. 1997;17(11):3236–41.

    Article  CAS  PubMed  Google Scholar 

  129. Suomela J. Effects of dietary fat oxidation products and flavonols on lipoprotein oxidation. University of Turku; 2006. ISBN 951-29-3044-7.

    Google Scholar 

  130. Canton J, Neculai D, Grinstein S. Scavenger receptors in homeostasis and immunity. Nat Rev Immunol. 2013;13:621–34.

    Article  CAS  PubMed  Google Scholar 

  131. Bancells C, Canals F, Benítez S, Colomé N, Julve J, Ordóñez-Llanos J, Sánchez-Quesada J. Proteomic analysis of electronegative low-density lipoprotein. J Lipid Res. 2010;51(12):3508–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Howard B, Comuzzie A, Devereux R, Ebbesson S, Fabsitz R, Howard W, Laston S, MacCluer J, Silverman A, Umans J, Wang H, Weissman N, Wenger C. Cardiovascular disease prevalence and its relation to risk factors in Alaska Eskimos. Nutr Metab Cardiovasc Dis. 2010;20(5):350–8.

    Article  CAS  PubMed  Google Scholar 

  133. Dewailly E, Blanchet C, Lemieux S, Sauvé L, Gingras S, Ayotte P, Holub B. n-3 fatty acids and cardiovascular disease risk factors among the Inuit of Nunavik. Am J Clin Nutr. 2001;74(4):464–73.

    Google Scholar 

  134. de Knijff P, Johansen L, Rosseneu M, Frants R, Jespersen J, Havekes L. Lipoprotein profile of a Greenland Inuit population. Influence of anthropometric variables, Apo E and A4 polymorphism, and lifestyle. Arterioscler Thromb. 1992;12(12):1371–9.

    Article  PubMed  Google Scholar 

  135. Young T, Moffatt M, O’Neil J. Cardiovascular diseases in a Canadian Arctic population. Am J Public Health. 1993;83(6):881–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Bang H, Dyerberg J, Sinclair H. The composition of the Eskimo food in north western Greenland. Am J Clin Nutr. 1980;33(12):2657–61.

    CAS  PubMed  Google Scholar 

  137. Rabinowitch M. Clinical and other observations on Canadian Eskimos in the Eastern Arctic. Can Med Assoc J. 1936;34(5):487–501.

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Hu Y, Sun H, O’Flaherty J, Edwards I. 15-lipoxygenase-1-mediated metabolism of docosahexaenoic acid is required for syndecan-1 signaling and apoptosis in prostate cancer cells. Carcinogenesis. 2013;34(1):176–82.

    Article  CAS  PubMed  Google Scholar 

  139. Kiebish M, Yang K, Sims H, Jenkins C, Liu X, Mancuso D, Zhao Z, Guan S, Abendschein D, Han X, Gross R. Myocardial regulation of lipidomic flux by cardiolipin synthase (Fig. 3). doi:10.1074/jbc.M112.340521.

    Google Scholar 

  140. Anwar M, Meki A. Oxidative stress in streptozotocin-induced diabetic rats: effects of garlic oil and melatonin. Comp Biochem Physiol A: Mol Integr Physiol. 2003;135(4):539–47.

    Article  CAS  Google Scholar 

  141. Montilla P, Vargas J, Túnez I, Muñoz de Agueda M, Valdelvira M, Cabrera E. Oxidative stress in diabetic rats induced by streptozotocin: protective effects of melatonin. J Pineal Res. 1998;25(2):94–100.

    Google Scholar 

  142. Ghosh S, Qi D, An D, Pulinilkunnil T, Abrahani A, Kuo K, Wambolt R, Allard M, Innis S, Rodrigues B. Brief episode of STZ-induced hyperglycemia produces cardiac abnormalities in rats fed a diet rich in n-6 PUFA. Am J Physiol Heart Circ Physiol. 2004;287(6):H2518–27.

    Article  CAS  PubMed  Google Scholar 

  143. Suzuki H, Kayama Y, Sakamoto M, Iuchi H, Shimizu I, Yoshino T, Katoh D, Nagoshi T, Tojo K, Minamino T, Yoshimura M, Utsunomiya K. Arachidonate 12/15-lipoxygenase-induced inflammation and oxidative stress are involved in the development of diabetic cardiomyopathy. Diabetes. 2015;64(2):618–30.

    Article  CAS  PubMed  Google Scholar 

  144. Yan Y. Kang B. The role of cardiolipin remodeling in mitochondrial function and human diseases. doi:10.5539/jmbr.v2n1p1.

  145. Garner B, Witting P, Waldeck A, Christison J, Raftery M, Stocker R. Oxidation of high density lipoproteins I. Formation of methionine sulfoxide in apolipoproteins AI and AII is an early event that accompanies lipid peroxidation and can be enhanced by α-tocopherol. J Biol Chem. 1998;273(11):6080–7.

    Article  CAS  PubMed  Google Scholar 

  146. Riwanto M, Landmesser U. High density lipoproteins and endothelial functions: mechanistic insights and alterations in cardiovascular disease. doi:10.1194/jlr.R037762.

    Google Scholar 

  147. Aviram M, Billecke S, Sorenson R, Bisgaier C, Newton R, Rosenblat M, Erogul J, Hsu C, Dunlop C, La Du B. Paraoxonase active site required for protection against LDL oxidation involves its free sulfhydryl group and is different from that required for its arylesterase/paraoxonase activities: selective action of human paraoxonase allozymes Q and R. Arterioscler Thromb Vasc Biol. 1998;18(10):1617–24.

    Article  CAS  PubMed  Google Scholar 

  148. Ng C, Wadleigh D, Gangopadhyay A, Hama S, Grijalva V, Navab M, Fogelman A, Reddy S. Paraoxonase-2 is a ubiquitously expressed protein with antioxidant properties and is capable of preventing cell-mediated oxidative modification of low density lipoprotein. doi:10.1074/jbc.M105660200.

    Google Scholar 

  149. Morgantini C, Natali A, Boldrini B, Imaizumi S, Navab M, Fogelman A, Ferrannini E, Reddy S. Anti-inflammatory and antioxidant properties of HDLs are impaired in type 2 diabetes. Diabetes. 2011;60(10):2617–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Thompson R, Allam A, Lombardi G, Wann L, Sutherland M, Sutherland J, Soliman M, Frohlich B, Mininberg D, Monge J, Vallodolid C, Cox S, Abd el-Maksoud G, Badr I, Miyamoto M, el-Halim Nur el-Din A, Narula J, Finch C, Thomas G. Atherosclerosis across 4000 years of human history: the Horus study of four ancient populations. Lancet. 2013;381(9873):1211–22.

    Article  PubMed  Google Scholar 

  151. Biss K, Taylor C, Lewis L, Mikkelson B, Hussey L, Jey-Ho K. The Masai’s protection against atherosclerosis. Pathol Microbiol (Basel). 1970;35(1):198–204.

    CAS  Google Scholar 

  152. Mann G, Spoerry A, Gray M, Jarashow D. Atherosclerosis in the Masai. Am J Epidemiol. 1972;95(1):26–37.

    CAS  PubMed  Google Scholar 

  153. Guyenet S. http://wholehealthsource.blogspot.com/2008/06/masai-and-atherosclerosis.html.

  154. Donnison C. Civilisation and Western disease. Baltimore William Wood and Company; 1938. p 18.

    Google Scholar 

  155. Kaunitz H. Medium chain triglycerides (MCT) in aging and arteriosclerosis. J Environ Pathol Toxicol Oncol. 1986;6(3–4):115-21.

    Google Scholar 

  156. Prior I, Davidson F, Salmond C, Czochanska Z. Cholesterol, coconuts, and diet on polynesian atolls: a natural experiment: the Pukapuka and Tokelau Island studies. Am J Clin Nutr. 1981;34:1552–61.

    CAS  PubMed  Google Scholar 

  157. de Roos N, Schouten E, Katan M. Consumption of a solid fat rich in lauric acid results in a more favorable serum lipid profile in healthy men and women than consumption of a solid fat rich in trans-fatty acids. J Nutr. 2001;131(2):242–5.

    PubMed  Google Scholar 

  158. The “original” high fat diet. http://www.researchdiets.com/opensource-diets/stock-diets/dio-series-diets.

  159. Daley C, Abbott A, Doyle P, Nader G, Larson S. A review of fatty acid profiles and antioxidant content in grass-fed and grain-fed beef. Nutr J. 2010;10(9):10. doi:10.1186/1475-2891-9-10.

    Article  CAS  Google Scholar 

  160. Aljefree N, Ahmed F. Prevalence of cardiovascular disease and associated risk factors among adult population in the gulf region: a systematic review. Adv Pub Health. 2015;2015, Article ID 235101.

    Google Scholar 

  161. Kratz M, Cullen P, Kannenberg F, Kassner A, Fobker M, Abuja PM, Assmann G, Wahrburg U. Effects of dietary fatty acids on the composition and oxidizability of low-density lipoprotein. Eur J Clin Nutr. 2002;56(1):72–81.

    Article  CAS  PubMed  Google Scholar 

  162. Odia O, Ofori S, Maduka O. Palm oil and the heart: a review. World J Cardiol. 2015;7(3):144–9.

    Article  PubMed  PubMed Central  Google Scholar 

  163. Lee K, Nail R, Sherman L, Milano M, Deden C, Imai H, Goodale F, Nam S, Scott R, Snell E, Daoud A, Jarmolych J, Jakovic L, Florentin R. Geographic pathology of myocardial infarction; Part I. Myocardial infarction in orientals and whites in the United States; Part II. Myocardial infarction in orientals in Korea and Japan; Part III. Myocardial infarction in Africans in Africa and negroes and whites in the United States; Part IV. Measurement of amount of coronary arteriosclerosis in Africans, Koreans, Japanese and New Yorkers. Amer J Cardiol 01/1964;13(1):30–40.

    Google Scholar 

  164. Idris C, Karupaiahb T, Sundramc K, Tan Y, Balasundram N, Leow S, Nasruddin N, Sambanthamurthi R. Oil palm phenolics and vitamin E reduce atheroscleros is in rabbits. doi:10.1016/j.jff.2014.01.002.

    Google Scholar 

  165. Kritchevsky D, Tepper S, Kuksis A, Wright S, Czarnecki S. Cholesterol vehicle in experimental atherosclerosis. 22. Refined, bleached, deodorized (RBD) palm oil, randomized palm oil and red palm oil. doi:10.1016/S0271-5317(00)00166-4.

    Google Scholar 

  166. Xian T, Omar N, Ying L, Hamzah A, Raj S, Jaarin K, Othman F, Hussan F. Reheated palm oil consumption and risk of atherosclerosis: evidence at ultrastructural level. Evid Based Complement Alternat Med. 2012;2012:828170.

    PubMed  PubMed Central  Google Scholar 

  167. Alleva R, Tomasetti M, Battino M, Curatola G, Littarru GP, Folkers K. The roles of coenzyme Q10 and vitamin E on the peroxidation of human low density lipoprotein subfractions. Proc Natl Acad Sci USA. 1995;92(20):9388–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Lass A, Belkner J, Esterbauer H, Kühn H. Lipoxygenase treatment renders low-density lipoprotein susceptible to Cu2+-catalysed oxidation. Biochem J. 1996;314:577–85.

    Google Scholar 

  169. Watanabe K, Fujii H, Takahashi T, Kodama M, Aizawa Y, Ohta Y, Ono T, Hasegawa G, Naito M, Nakajima T, Kamijo Y, Gonzalez FJ, Aoyama T. Constitutive regulation of cardiac fatty acid metabolism through peroxisome proliferator-activated receptor alpha associated with age-dependent cardiac toxicity. J Biol Chem. 2000;275(29):22293–9.

    Article  CAS  PubMed  Google Scholar 

  170. Ament Z, Masoodi M, Griffin J. Applications of metabolomics for understanding the action of peroxisome proliferator-activated receptors (PPARs) in diabetes, obesity and cancer. Genome Med. 2012;4:32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Djoussé L, Folsom A, Province M, Hunt S, Ellison R. Dietary linolenic acid and carotid atherosclerosis: the national heart, lung, and blood institute family heart study. Am J Clin Nutr. 2003;77:819–25.

    PubMed  Google Scholar 

  172. Rodriguez-Leyva D, Bassett C, McCullough R, Pierce G. The cardiovascular effects of flaxseed and its omega-3 fatty acid, alpha-linolenic acid. Can J Cardiol. 2010;26(9):489–96.

    Article  PubMed  PubMed Central  Google Scholar 

  173. Contreras A, Torres N, Tovar A. PPAR-α as a key nutritional and environmental sensor for metabolic adaptation. Adv Nutr. 2013;4:439–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Vecchio A, Orlando B, Nandagiri R, Malkowski M. Investigating substrate promiscuity in cyclooxygenase-2: the role of arg-120 and residues lining the hydrophobic groove. J Biol Chem. 2012;287(29):24619–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Ramsden C, Zamora D, Majchrzak-Hong S, Faurot K, Broste S, Frantz R, Davis J, Ringel A, Suchindran C, Hibbeln J. Re-evaluation of the traditional diet-heart hypothesis: analysis of recovered data from Minnesota Coronary experiment (1968–73). BMJ. 2016;353:i1246.

    Article  PubMed  PubMed Central  Google Scholar 

  176. Ramsden C, Zamora D, Leelarthaepin B, Majchrzak-Hong S, Faurot K, Suchindran C, Ringel A, Davis J, Hibbeln J, Use of dietary linoleic acid for secondary prevention of coronary heart disease and death evaluation of recovered data from the sydney diet heart study and updated meta-analysis. BMJ. 2013;346:e8707.

    Google Scholar 

  177. Trowell H, Burkitt D. Western diseases: their emergence and prevention. Edward Arnold; 1981.

    Google Scholar 

  178. Cleave T. Fat Consumption and coronary disease, an evolutionary answer to this problem. A basic approach to the prevention and arrest of coronary disease. Bristol: John Wright and Sons; 1957.

    Google Scholar 

  179. Cleave T. Saccharine disease—conditions caused by the taking of refined carbohydrates, such as sugar and white flour. Bristol John Wright & Sons Limited; 1974. (free online http://journeytoforever.org/farm_library/Cleave/cleave_toc.html).

  180. Sinclair H. Deficiency of essential fatty acids and atherosclerosis, etcetera. Lancet. 1956;270(6919):381–3.

    CAS  PubMed  Google Scholar 

  181. Soydinç S, Çelik A, Demiryürek S, Davutoğlu V. Tarakçıoğlu M, Mehmet A. The relationship between oxidative stress, nitric oxide, and coronary artery disease. Eur J Gen Med 2007;4(2):62–66.

    Google Scholar 

  182. Mali V, Palaniyandi S. Regulation and therapeutic strategies of 4-hydroxy-2-nonenal metabolism in heart disease. Free Radic Res. 2014;48(3):251–63.

    Article  CAS  PubMed  Google Scholar 

  183. Ramsden C, Hibbeln J, Majchrzak S. Davis J.n-6 fatty acid-specific and mixed polyunsaturate dietary interventions have different effects on CHD risk: a meta-analysis of randomised controlled trials. Br J Nutr. 2010;104(11):1586–600.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Andrew Brown .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Brown, R.A. (2016). In a Western Dietary Context Excess Oxidised Linoleic Acid of Dietary and Endogenous Origin by Over-Activation of PPAR Gamma so Immune and Inflammatory Pathways, and through Cardiolipin Damage, Increases Cardiovascular Risk. In: Hegde, M., Zanwar, A., Adekar, S. (eds) Omega-3 Fatty Acids. Springer, Cham. https://doi.org/10.1007/978-3-319-40458-5_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40458-5_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40456-1

  • Online ISBN: 978-3-319-40458-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics