Skip to main content

Influence of Omega-3 Fatty Acids on Bone Turnover

  • Chapter
  • First Online:
Omega-3 Fatty Acids

Abstract

Bone is a metabolically active tissue that undergoes continuous remodeling to cope with the body’s Ca and P requirements and to repair microscopic damage in a dynamic process where osteoblasts are responsible for bone formation and osteoclasts for its resorption. Dietary fat has a clear influence on bone health. Long-chain polyunsaturated fatty acids (LC-PUFAs), especially the omega-3 (ω-3) fatty acids such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are beneficial for bone metabolism. Several studies have reported that LC-PUFAs can increase bone formation, affecting peak bone mass in adolescents and reducing bone loss, because LC-PUFAs reduce inflammatory cytokines, increases calcium absorption, and enhances skeletal calcium levels. This chapter summarizes the role of LC-PUFA, especially the ω-3 fatty acids such as eicosapentaenoic acid (EPA) and docosahexaenoic acid, on bone health and turnover.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Boyce BF, Yao Z, Xing L. Osteoclasts have multiple roles in bone in addition to bone resorption. Crit Rev Eukaryot Gene Expr. 2009;19(3):171–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Barva Evia JR. Marcadores del Remodelado Óseo y Osteoporosis. Rev Mex Patol Clín. 2011;58(3):113–37.

    Google Scholar 

  3. Quinn JMW, Gillespie MT. Modulation of osteoclast formation. Biochem Biophys Res Commun. 2005;328:739–45.

    Article  CAS  PubMed  Google Scholar 

  4. Poulsen RC, Moughan PJ, Kruger MC. Long-chain polyunsaturated fatty acids and the regulation of bone metabolism. Exp Biol Med. 2007;232:1275–88.

    Article  CAS  Google Scholar 

  5. Caetano-Lopes J, Canhão H, Fonseca JE. Osteoblasts and bone formation. Acta Reumatol. 2007;32(2):103–10.

    Google Scholar 

  6. Ziskoven C, Jäger M, Zilkens C, et al. Oxidative stress in secondary osteoarthritis: from cartilage destruction to clinical presentation. Orthop Rev. 2010;2:95–101.

    Article  Google Scholar 

  7. Kousteni S. FoXOs: unifying links between oxidative stress and skeletal homeostatis. Curr Osteoporos Rep. 2011;9:60–6.

    Article  PubMed  Google Scholar 

  8. Sheweita SA, Khoshhal KL. Calcium metabolism and oxidative stress in bone fractures: role of antioxidants. Curr Drug Metab. 2007;8:519–25.

    Article  CAS  PubMed  Google Scholar 

  9. Bai XC, Lu D, Liu AL, et al. Reactive oxygen species stimulates receptor activator of NF-kappaB ligand expression in osteoblast. J Biol Chem. 2005;29:17497–506.

    Article  Google Scholar 

  10. Manolagas SC. From estrogen-centric to aging and oxidative stress: a revised perspective of the pathogenesis of osteoporosis. Endocr Rev. 2010;31:266–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Filaire E, Toumi H. Reactive oxygen species and exercise on bone metabolism: friend or enemy? Joint Bone Spine. 2012;79(4):341–6.

    Article  CAS  PubMed  Google Scholar 

  12. Kousteni S. FoxO1: a molecule for all reasons. J Bone Miner Res. 2010;26:912–7.

    Article  Google Scholar 

  13. Sontakke AN, Tare RS. A duality in the role of reactive oxygen species with respect to bone metabolism. Clin Chim Acta. 2002;318:145–8.

    Article  CAS  PubMed  Google Scholar 

  14. Ritchlin CT, Haas-Smith SA, Li P, Hicks DG, Schwarz EM. Mechanisms of TNF-a and RANKL-mediated osteoclastogenesis and bone resorption in psoriatic arthritis. J Clin Invest. 2003;222:821–31.

    Article  Google Scholar 

  15. Anandarajah AP, Schwarz EM. Anti-RANKL therapy for inflammatory bone disorders: mechanisms and potential clinical applications. J Cell Biochem. 2006;97:226–32.

    Article  CAS  PubMed  Google Scholar 

  16. Gravallese EM, Manning C, Tsay A, Naito A, Pan C, Amento E, Goldring SR. Synovial tissue in rheumatoid arthritis is a source of osteoclast differentiation factor. Arthritis Rheum. 2000;43:250–8.

    Article  CAS  PubMed  Google Scholar 

  17. Nakashima T, Takayanagi H. Osteoimmunology: crosstalk between the immune and bone systems. J Clin Immunol. 2009;29:555–67.

    Article  PubMed  Google Scholar 

  18. Bhattacharya A, Rahman M, Sun D, Fernandes G. Effect of fish oil on bone mineral density in aging C57BL/6 female mice. J Nutr Biochem. 2007;18:372–9.

    Article  CAS  PubMed  Google Scholar 

  19. Rahman MM, Bhattacharya A, Fernandes G. Docosahexaenoic acid is more potent inhibitor of osteoclast differentiation in RAW 264.7 cells than eicosapentaenoic acid. J Cell Physiol. 2008;214(1):201–9.

    Article  CAS  PubMed  Google Scholar 

  20. Rahman MM, Bhattacharya A, Banu J, Kang JX, Fernandes G. Endogenous n-3 fatty acids protect ovariectomy induced bone loss by attenuating osteoclastogenesis. J Cell Mol Med. 2009;13(8B):1833–44.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Shen CL, Peterson J, Tatum OL, Dunn DM. Effect of long-chain n-3 polyunsaturated fatty acid on inflammation mediators during osteoblastogenesis. J Med Food. 2008;11(1):105–10.

    Article  CAS  PubMed  Google Scholar 

  22. Poulsen RC, Wolber FM, Moughan PJ, Kruger MC. Long chain polyunsaturated fatty acids alter membrane-bound RANKL expression and osteoprotegerin secretion byMC3T3-E1 osteoblast-like cells. Prostaglandins Other Lipid Mediat. 2008;85(1–2):42–8.

    Article  CAS  PubMed  Google Scholar 

  23. Coetzee M, Haag M, Kruger MC. Effects of arachidonic acid and docosahexaenoic acid on differentiation and mineralization of MC3T3-E1 osteoblast-like cells. Cell Biochem Funct. 2009;27(1):3–11.

    Article  CAS  PubMed  Google Scholar 

  24. Griel AE, Kris-Etherton PM, Hilpert KF, Zhao G, West SG, Corwin RL. An increase in dietary n-3 fatty acids decreases a marker of bone resorption in humans. Nutr J. 2007;6:2.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Bonewald L. Mechanosensation and transduction in osteocytes. Bone Key Osteovis. 2006;3:7–15.

    Article  Google Scholar 

  26. Smith EL, Clark WD. Cellular control of bone response to physical activity. Top Geriatr Rehab. 2005;21:77–87.

    Article  Google Scholar 

  27. Yoshida K, Oida H, Kobayashi T, Maruyama T, Tanaka M, Katayama T, et al. Stimulation of bone formation and prevention of bone loss by prostaglandin E EP4 receptor activation. Proc Natl Acad Sci USA. 2003;99:4580–5.

    Article  Google Scholar 

  28. Poulsen RC, Firth EC, Rogers CW, Moughan PJ, Kruger MC. Specific effects of gamma-linolenic, eicosapentaenoic, and docosahexaenoic ethyl esters on bone post-ovariectomy in rats. Calcif Tissue Int. 2007;81:459–71.

    Article  CAS  PubMed  Google Scholar 

  29. Watkins BA, Li Y, Allen KG, Hoffmann WE, Seifert MF. Dietary ratio of (n-6)/(n-3) polyunsaturated fatty acids alters the fatty acid composition of bone compartments and biomarkers of bone formation in rats. J Nutr. 2000;130:2274–84.

    CAS  PubMed  Google Scholar 

  30. Kruger MC, Schollum LM. Is docosahexaenoic acid more effective than eicosapentaenoic acid for increasing calcium bioavailability? Prostaglandins Leukot Essent Fatty Acids. 2005;73:327–34.

    Article  CAS  PubMed  Google Scholar 

  31. Rahman M, Kundu JK, Shin JW, Na HK, Surh YJ. Docosahexaenoic acid inhibits UVB-induced activation of NF-kappaB and expression of COX-2 and NOX-4 in HR-1 hairless mouse skin by blocking MSK1 signaling. PLoS ONE. 2011;6:e28065.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Oliver E, McGillicuddy FC, Harford KA, Reynolds CM, Phillips CM, Ferguson JF, Roche HM. Docosahexaenoic acid attenuates macrophage-induced inflammation and improves insulin sensitivity in adipocytes-specific differential effects between LC n-3 PUFA. J Nutr Biochem. 2012;23:1192–200.

    Article  CAS  PubMed  Google Scholar 

  33. Martinez-Micaelo N, Gonzalez-Abuin N, Terra X, Richart C, Ardevol A, Pinent M, et al. Omega-3 docosahexaenoic acid and procyanidins inhibit cyclo-oxygenase activity and attenuate NF-kappaB activation through a p105/p50 regulatory mechanism in macrophage inflammation. Biochem J. 2012;441:653–63.

    Article  CAS  PubMed  Google Scholar 

  34. Yuan J, Akiyama M, Nakahama K, Sato T, Uematsu H, et al. The effects of polyunsaturated fatty acids and their metabolites on osteoclastogenesis in vitro. Prostaglandins Other Lipid Mediat. 2010;92(1–4):85–90.

    Article  CAS  PubMed  Google Scholar 

  35. Li Y, Seifert MF, Lim SY, Salem N Jr, Watkins BA. Bone mineral content is positively correlated to n-3 fatty acids in the femur of growing rats. Br J Nutr. 2010;104:674–85.

    Article  CAS  PubMed  Google Scholar 

  36. Li Y, Seifert MF, Lim SY, Salem N Jr, Watkins BA. Bone mineral content is positively correlated to n-3 fatty acids in the femur of growing rats. Br J Nutr. 2013;104:674–85.

    Article  Google Scholar 

  37. Watkins BA, Li Y, Seifert MF. Dietary ratio of n-6/n-3 PUFAs and docosahexaenoic acid: actions on bone mineral and serum biomarkers inovariectomized rats. J Nutr Biochem. 2006;17:282–9.

    Article  CAS  PubMed  Google Scholar 

  38. Salari P, Rezaie A, Larijani B, Abdollahi M. A systematic review of the impact of n-3 fatty acids in bone health and osteoporosis. Med Sci Monit. 2008;14(3):RA37–44.

    Google Scholar 

  39. Casado-Diaz A, Santiago-Mora R, Dorado G, Quesada-Gomez JM. The omega-6 arachidonic fatty acid, but not the omega-3 fatty acids, inhibits osteoblastogenesis and induces adipogenesis of human mesenchymal stem cells: potential implication in osteoporosis. Osteoporos Int. 2013;24:1647–61.

    Article  CAS  PubMed  Google Scholar 

  40. Hogstrom M, Nordstrom P, Nordstrom A. n-3 Fatty acids are positively associated with peak bone mineral density and bone accrual in healthy men: the NO2 Study. Am J Clin Nutr. 2007;85:803.

    PubMed  Google Scholar 

  41. Orchard TS, Pan X, Cheek F, Ing SW, Jackson RD. A systematic review of omega-3 fatty acids and osteoporosis. Br J Nutr. 2012;107(Suppl 2):S253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Li Y, Seifert MF, Lim SY, Salem N Jr, Watkins BA. Bone mineral content is positively correlated to n-3 fatty acids in the femur of growing rats. Br J Nutr. 2010;104:674.

    Article  CAS  PubMed  Google Scholar 

  43. Fallon EM, Nazarian A, Nehra D, Pan AH, O’Loughlin AA, Nose V, Puder M. The effect of docosahexaenoic acid on bone microstructure in young mice and bone fracture in neonates. J Surg Res. 2014;191(1):148–55.

    Article  CAS  PubMed  Google Scholar 

  44. Sun L, Tamaki H, Ishimaru T, et al. Inhibition of osteoporosis due to restricted food intake by the fish oils DHA and EPA and perilla oil in the rat. Biosci Biotechnol Biochem. 2004;68:2613.

    Article  CAS  PubMed  Google Scholar 

  45. Salari P, Abdollahi M. Controversial effects of non-steroidal anti-inflammatory drugs on bone: a review. Inflamm Allergy Drug Target. 2009;8(3):169–75.

    Article  CAS  Google Scholar 

  46. Rahman MM, Veigas JM, Williams PJ, Fernandes G. DHA is a more potent inhibitor of breast cancer metastasis to bone and related osteolysis than EPA. Breast Cancer Res Treat. 2013;141(3):341–52.

    Article  CAS  PubMed  Google Scholar 

  47. Hutchins-Wiese HL, Picho K, Watkins BA, Li Y, Tannenbaum S, Claffey K, Kenny AM. High-dose eicosapentaenoic acid and docosahexaenoic acid supplementation reduces bone resorption in postmenopausal breast cancer survivors on aromatase inhibitors: a pilot study. Nutr Cancer. 2014;66:68–76.

    Article  CAS  PubMed  Google Scholar 

  48. Appleton KM, Fraser WD, Rogers PJ, Ness AR, Tobias JH. Supplementation with a low-moderate dose of n-3 long-chain PUFA has no short-term effect on bone resorption in human adults. Br J Nutr. 2011;105:1145–9.

    Article  CAS  PubMed  Google Scholar 

  49. Alfano CM, Imayama I, Neuhouser ML, Kiecolt-Glaser JK, Smith AW, et al. Fatigue, inflammation, and omega-3 and omega-6 fatty acid intake among breast cancer survivors. J Clin Oncol. 2012;30:1280–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Serhan CN, Petasis NA. Resolvins and protectins in inflammation resolution. Chem Rev. 2011;111:5922–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Herrera BS, Ohira T, Gao L, Omori K, Yang R, et al. An endogenous regulator of inflammation, resolvin E1, modulates osteoclast differentiation and bone resorption. Br J Pharmacol. 2008;155:1214–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Jarvinen R, Tuppurainen M, Erkkila AT, Penttinen P, Karkkainen M, Salovaara K, Jurvelin JS, Kroger H. Associations of dietary polyunsaturated fatty acids with bone mineral density in elderly women. Eur J Clin Nutr. 2012;66:496–503.

    Article  CAS  PubMed  Google Scholar 

  53. Moon HJ, Kim TH, Byun DW, Park Y. Positive correlation between erythrocyte levels of n-3 polyunsaturated fatty acids and bone mass in postmenopausal Korean women with osteoporosis. Ann Nutr Metab. 2012;60:146–53.

    Article  CAS  PubMed  Google Scholar 

  54. Lopez IP, Marti A, Milagro FI, Zulet Md Mde L, Moreno-Aliaga MJ, Martinez JA, De Miguel C. DNA microarray analysis of genes differentially expressed in diet-induced (cafeteria) obese rats. Obes Res. 2003;11:188–94.

    Google Scholar 

  55. Chen TY, Zhang ZM, Zheng XC, Wang L, Huang MJ, Qin S, Chen J, Lai PL, Yang CL, Liu J, Dai YF, Jin DD, Bai XC. Endogenous n-3 polyunsaturated fatty acids (PUFAs) mitigate ovariectomy-induced bone loss by attenuating bone marrow adipogenesis in FAT1 transgenic mice. Drug Des Dev Ther. 2013;7:545–52.

    CAS  Google Scholar 

  56. Mollard RC, Gillam ME, Wood TM, Taylor CG, Weiler HA. (n-3) fatty acids reduce the release of prostaglandin E2 from bone but do not affect bone mass in obese (fa/fa) and lean Zucker rats. J Nutr. 2005;135(3):499–504.

    CAS  PubMed  Google Scholar 

  57. Casado-Díaz A, Ferreiro-Vera C, Priego-Capote F, Dorado G, Luque-de-Castro MD, Quesada-Gómez JM. Effects of arachidonic acid on the concentration of hydroxyeicosatetraenoic acids in culture media of mesenchymal stromal cells differentiating into adipocytes or osteoblasts. Genes Nutr. 2014;9(1):375.

    Article  PubMed  Google Scholar 

  58. Almeida M, Ambrogini E, Han L, Manolagas SC, Jilka RL. Increased lipid oxidation causes oxidative stress, increased peroxisome proliferator-activated receptor-gamma expression, and diminished pro-osteogenic Wnt signaling in the skeleton. J Biol Chem. 2009;284:27438–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Corwin RL, Hartman TJ, Maczuga SA, Graubard BI. Dietary saturated fat intake is inversely associated with bone density in humans: analysis of NHANES III. J Nutr. 2006;136:159–65.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julio J. Ochoa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Díaz-Castro, J., Kajarabille, N., Pulido-Morán, M., Moreno-Fernández, J., López-Frías, M., Ochoa, J.J. (2016). Influence of Omega-3 Fatty Acids on Bone Turnover. In: Hegde, M., Zanwar, A., Adekar, S. (eds) Omega-3 Fatty Acids. Springer, Cham. https://doi.org/10.1007/978-3-319-40458-5_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40458-5_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40456-1

  • Online ISBN: 978-3-319-40458-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics