Skip to main content

Role of Omega-3 Fatty Acids for Eye Health

  • Chapter
  • First Online:
Omega-3 Fatty Acids

Abstract

Omega-3 polyunsaturated fatty acids are essential nutrients for healthy individuals. Their beneficial effects in coronary and autoimmune diseases, as well as in diabetes, have been proven numerous times in the past. In addition, their role in maintaining normal physiology of the eyes has been extensively discussed over the last few years, with more emphasis given on their anti-inflammatory effects. From a literature review and some of our observational studies, there is strong evidence to support that supplementation of individuals with omega-3 formulations could lead to disease regression in some types of retinopathies, including age-related macular degeneration and macular dystrophies and also some severe forms of dry eyes. Therefore, using the right dosage regime and with the appropriate supervision, omega-3 supplementationĀ could be a potential therapeutic for different types of oculopathies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sears B. The anti-inflammation zone. New York: HarperCollins; 2005.

    Google ScholarĀ 

  2. Serhan CN, Arita M, Hong S, Gotlinger K. Resolvins, docosatrienes, and neuroprotectins, novel omega-3-derived mediators, and their endogenous aspirin-triggered epimers. Lipids. 2004;39(11):1125ā€“32.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  3. Bazan NG. Omega-3 fatty acids, pro-inflammatory signaling and neuroprotection. Current Opin Clin Nutr Metab Care. 2007;10(2):136ā€“41.

    ArticleĀ  CASĀ  Google ScholarĀ 

  4. Birch EE, Birch DG, Hoffman DR, Uauy R. Dietary essential fatty acid supply and visual acuity development. Invest Ophthalmol Vis Sci. 1992;33(11):3242ā€“53.

    CASĀ  PubMedĀ  Google ScholarĀ 

  5. Friedman DS, Oā€™Colmain BJ, Munoz B, Tomany SC, McCarty C, de Jong PT, et al. Prevalence of age-related macular degeneration in the United States. Arch Ophthalmol. 2004;122(4):564ā€“72.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  6. Wong WL, Su X, Li X, Cheung CM, Klein R, Cheng CY, et al. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis. Lancet Glob Health. 2014;2(2):e106ā€“16.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  7. Miller JW. Age-related macular degeneration revisitedā€“piecing the puzzle: the LXIX Edward Jackson memorial lecture. Am J Ophthalmol. 2013;155(1):1ā€“35, e13.

    Google ScholarĀ 

  8. SanGiovanni JP, Agron E, Clemons TE, Chew EY. Omega-3 long-chain polyunsaturated fatty acid intake inversely associated with 12-year progression to advanced age-related macular degeneration. Arch Ophthalmol. 2009;127(1):110ā€“2.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  9. Nag TC, Wadhwa S. Ultrastructure of the human retina in aging and various pathological states. Micron. 2012;43(7):759ā€“81.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  10. Harman D. Aging: a theory based on free radical and radiation chemistry. J Gerontol. 1956;11(3):298ā€“300.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  11. Nussenblatt RB, Lee RW, Chew E, Wei L, Liu B, Sen HN, et al. Immune responses in age-related macular degeneration and a possible long-term therapeutic strategy for prevention. Am J Ophthalmol. 2014;158(1):5ā€“11, e2.

    Google ScholarĀ 

  12. Macaulay R, Akbar AN, Henson SM. The role of the T cell in age-related inflammation. Age. 2013;35(3):563ā€“72.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  13. Ferrara DC, Merriam JE, Freund KB, Spaide RF, Takahashi BS, Zhitomirsky I, et al. Analysis of major alleles associated with age-related macular degeneration in patients with multifocal choroiditis: strong association with complement factor H. Arch Ophthalmol. 2008;126(11):1562ā€“6.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  14. Anderson DH, Radeke MJ, Gallo NB, Chapin EA, Johnson PT, Curletti CR, et al. The pivotal role of the complement system in aging and age-related macular degeneration: hypothesis re-visited. Prog Retinal Eye Res. 2010;29(2):95ā€“112.

    ArticleĀ  CASĀ  Google ScholarĀ 

  15. Klein RJ, Zeiss C, Chew EY, Tsai JY, Sackler RS, Haynes C, et al. Complement factor H polymorphism in age-related macular degeneration. Science. 2005;308(5720):385ā€“9.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  16. Edwards AO, Ritter R 3rd, Abel KJ, Manning A, Panhuysen C, Farrer LA. Complement factor H polymorphism and age-related macular degeneration. Science. 2005;308(5720):421ā€“4.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  17. Gottfredsdottir MS, Sverrisson T, Musch DC, Stefansson E. Age related macular degeneration in monozygotic twins and their spouses in Iceland. Acta Ophthalmol Scand. 1999;77(4):422ā€“5.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  18. Xu H, Chen M, Forrester JV. Para-inflammation in the aging retina. Prog Retinal Eye Res. 2009;28(5):348ā€“68.

    ArticleĀ  Google ScholarĀ 

  19. Barouch FC, Miller JW. The role of inflammation and infection in age-related macular degeneration. Int Ophthalmol Clin. 2007;47(2):185ā€“97.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  20. Penfold PL, Killingsworth MC, Sarks SH. Senile macular degeneration: the involvement of immunocompetent cells. Graefeā€™s Arch Clin Exp Ophthalmol. 1985;223(2):69ā€“76 (Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie).

    ArticleĀ  CASĀ  Google ScholarĀ 

  21. Penfold PL, Liew SC, Madigan MC, Provis JM. Modulation of major histocompatibility complex class II expression in retinas with age-related macular degeneration. Invest Ophthalmol Vis Sci. 1997;38(10):2125ā€“33.

    CASĀ  PubMedĀ  Google ScholarĀ 

  22. Seddon JM, Gensler G, Milton RC, Klein ML, Rifai N. Association between C-reactive protein and age-related macular degeneration. JAMA. 2004;291(6):704ā€“10.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  23. Seddon JM, George S, Rosner B, Rifai N. Progression of age-related macular degeneration: prospective assessment of C-reactive protein, interleukin 6, and other cardiovascular biomarkers. Arch Ophthalmol. 2005;123(6):774ā€“82.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  24. Klein R, Klein BE, Marino EK, Kuller LH, Furberg C, Burke GL, et al. Early age-related maculopathy in the cardiovascular health study. Ophthalmology. 2003;110(1):25ā€“33.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  25. Klein R, Klein BE, Knudtson MD, Wong TY, Shankar A, Tsai MY. Systemic markers of inflammation, endothelial dysfunction, and age-related maculopathy. Am J Ophthalmol. 2005;140(1):35ā€“44.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  26. Libby P, Ridker PM. Inflammation and atherosclerosis: role of C-reactive protein in risk assessment. Am J Med. 2004;116(Suppl 6A):9Sā€“16S.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  27. Cousins SW, Espinosa-Heidmann DG, Csaky KG. Monocyte activation in patients with age-related macular degeneration: a biomarker of risk for choroidal neovascularization? Arch Ophthalmol. 2004;122(7):1013ā€“8.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  28. Gupta N, Brown KE, Milam AH. Activated microglia in human retinitis pigmentosa, late-onset retinal degeneration, and age-related macular degeneration. Exp Eye Res. 2003;76(4):463ā€“71.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  29. Chen M, Forrester JV, Xu H. Synthesis of complement factor H by retinal pigment epithelial cells is down-regulated by oxidized photoreceptor outer segments. Exp Eye Res. 2007;84(4):635ā€“45.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  30. Chen M, Muckersie E, Robertson M, Forrester JV, Xu H. Up-regulation of complement factor B in retinal pigment epithelial cells is accompanied by complement activation in the aged retina. Exp Eye Res. 2008;87(6):543ā€“50.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  31. Coffey PJ, Gias C, McDermott CJ, Lundh P, Pickering MC, Sethi C, et al. Complement factor H deficiency in aged mice causes retinal abnormalities and visual dysfunction. Proc Natl Acad Sci USA. 2007;104(42):16651ā€“6.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  32. Sohn JH, Kaplan HJ, Suk HJ, Bora PS, Bora NS. Chronic low level complement activation within the eye is controlled by intraocular complement regulatory proteins. Invest Ophthalmol Vis Sci. 2000;41(11):3492ā€“502.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  33. Gragoudas ES, Adamis AP, Cunningham ET Jr, Feinsod M, Guyer DR. Group VISiONCT. Pegaptanib for neovascular age-related macular degeneration. New Engl J Med. 2004;351(27):2805ā€“16.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  34. Rofagha S, Bhisitkul RB, Boyer DS, Sadda SR, Zhang K. Group S-US. Seven-year outcomes in ranibizumab-treated patients in ANCHOR, MARINA, and HORIZON: a multicenter cohort study (SEVEN-UP). Ophthalmology. 2013;120(11):2292ā€“9.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  35. Age-Related Eye Disease Study Research G. A randomized, placebo-controlled, clinical trial of high-dose supplementation with vitamins C and E and beta carotene for age-related cataract and vision loss: AREDS report no. 9. Arch Ophthalmol. 2001;119(10):1439ā€“52.

    ArticleĀ  Google ScholarĀ 

  36. SanGiovanni JP, Chew EY, Agron E, Clemons TE, Ferris FL 3rd, Gensler G, et al. The relationship of dietary omega-3 long-chain polyunsaturated fatty acid intake with incident age-related macular degeneration: AREDS report no. 23. Arch Ophthalmol. 2008;126(9):1274ā€“9.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  37. Mishra A, Chaudhary A, Sethi S. Oxidized omega-3 fatty acids inhibit NF-kappaB activation via a PPARalpha-dependent pathway. Arterioscler Thromb Vasc Biol. 2004;24(9):1621ā€“7.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  38. De Caterina R, Liao JK, Libby P. Fatty acid modulation of endothelial activation. Am J Clin Nutr. 2000;71(1 Suppl):213Sā€“23S.

    PubMedĀ  Google ScholarĀ 

  39. Chen W, Esselman WJ, Jump DB, Busik JV. Anti-inflammatory effect of docosahexaenoic acid on cytokine-induced adhesion molecule expression in human retinal vascular endothelial cells. Invest Ophthalmol Vis Sci. 2005;46(11):4342ā€“7.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  40. Rotstein NP, Politi LE, German OL, Girotti R. Protective effect of docosahexaenoic acid on oxidative stress-induced apoptosis of retina photoreceptors. Invest Ophthalmol Vis Sci. 2003;44(5):2252ā€“9.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  41. Tuo J, Ross RJ, Herzlich AA, Shen D, Ding X, Zhou M, et al. A high omega-3 fatty acid diet reduces retinal lesions in a murine model of macular degeneration. Am J Pathol. 2009;175(2):799ā€“807.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  42. Calder PC. Long-chain n-3 fatty acids and inflammation: potential application in surgical and trauma patients. Braz J Med Biol Res. 2003;36(4):433ā€“46 (Revista brasileira de pesquisas medicas e biologicas/ Sociedade Brasileira de Biofisica ).

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  43. Kapoor M, Kojima F, Yang L, Crofford LJ. Sequential induction of pro- and anti-inflammatory prostaglandins and peroxisome proliferators-activated receptor-gamma during normal wound healing: a time course study. Prostaglandins Leukot Essent Fatty Acids. 2007;76(2):103ā€“12.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  44. Ramkumar HL, Tuo J, de Shen F, Zhang J, Cao X, Chew EY, et al. Nutrient supplementation with n3 polyunsaturated fatty acids, lutein, and zeaxanthin decrease A2E accumulation and VEGF expression in the retinas of Ccl2/Cx3cr1-deficient mice on Crb1rd8 background. J Nutr. 2013;143(7):1129ā€“35.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  45. Tassos Georgiou AN, Nicolaou Despina, Sears Barry. Pilot study for treating dry age-related macular degeneration (AMD) with high-dose omega-3 fatty acids. PharmaNutr. 2014;2:8ā€“11.

    ArticleĀ  Google ScholarĀ 

  46. Yanai R, Mulki L, Hasegawa E, Takeuchi K, Sweigard H, Suzuki J, et al. Cytochrome P450-generated metabolites derived from omega-3 fatty acids attenuate neovascularization. Proc Natl Acad Sci USA. 2014;111(26):9603ā€“8.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  47. Webler AC, Michaelis UR, Popp R, Barbosa-Sicard E, Murugan A, Falck JR, et al. Epoxyeicosatrienoic acids are part of the VEGF-activated signaling cascade leading to angiogenesis. Am J Physiol Cell Physiol. 2008;295(5):C1292ā€“301.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  48. Zhang G, Panigrahy D, Mahakian LM, Yang J, Liu JY, Stephen Lee KS, et al. Epoxy metabolites of docosahexaenoic acid (DHA) inhibit angiogenesis, tumor growth, and metastasis. Proc Natl Acad Sci USA. 2013;110(16):6530ā€“5.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  49. Connor KM, SanGiovanni JP, Lofqvist C, Aderman CM, Chen J, Higuchi A, et al. Increased dietary intake of omega-3-polyunsaturated fatty acids reduces pathological retinal angiogenesis. Nat Med. 2007;13(7):868ā€“73.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  50. Rezende FA, Lapalme E, Qian CX, Smith LE, SanGiovanni JP, Sapieha P. Omega-3 supplementation combined with anti-vascular endothelial growth factor lowers vitreal levels of vascular endothelial growth factor in wet age-related macular degeneration. Am J Ophthalmol. 2014;158(5):1071ā€“8.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  51. Dryja TP, McGee TL, Reichel E, Hahn LB, Cowley GS, Yandell DW, et al. A point mutation of the rhodopsin gene in one form of retinitis pigmentosa. Nature. 1990;343(6256):364ā€“6.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  52. Kajiwara K, Hahn LB, Mukai S, Travis GH, Berson EL, Dryja TP. Mutations in the human retinal degeneration slow gene in autosomal dominant retinitis pigmentosa. Nature. 1991;354(6353):480ā€“3.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  53. Cotran PR, Bruns GA, Berson EL, Dryja TP. Genetic analysis of patients with retinitis pigmentosa using a cloned cDNA probe for the human gamma subunit of cyclic GMP phosphodiesterase. Exp Eye Res. 1991;53(5):557ā€“64.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  54. Wong P. Apoptosis, retinitis pigmentosa, and degeneration. Biochemistry Cell Biol. 1994;72(11ā€“12):489ā€“98 (Biochimie et biologie cellulaire).

    ArticleĀ  CASĀ  Google ScholarĀ 

  55. Pruett RC. Retinitis pigmentosa: clinical observations and correlations. Trans Am Ophthalmol Soc. 1983;81:693ā€“735.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  56. Newsome DA, Michels RG. Detection of lymphocytes in the vitreous gel of patients with retinitis pigmentosa. Am J Ophthalmol. 1988;105(6):596ā€“602.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  57. Yoshida N, Ikeda Y, Notomi S, Ishikawa K, Murakami Y, Hisatomi T, et al. Clinical evidence of sustained chronic inflammatory reaction in retinitis pigmentosa. Ophthalmology. 2013;120(1):100ā€“5.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  58. Bush RA, Malnoe A, Reme CE, Williams TP. Dietary deficiency of N-3 fatty acids alters rhodopsin content and function in the rat retina. Invest Ophthalmol Vis Sci. 1994;35(1):91ā€“100.

    CASĀ  PubMedĀ  Google ScholarĀ 

  59. Yoshida N, Ikeda Y, Notomi S, Ishikawa K, Murakami Y, Hisatomi T, et al. Laboratory evidence of sustained chronic inflammatory reaction in retinitis pigmentosa. Ophthalmology. 2013;120(1):e5ā€“12.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  60. Ebert S, Weigelt K, Walczak Y, Drobnik W, Mauerer R, Hume DA, et al. Docosahexaenoic acid attenuates microglial activation and delays early retinal degeneration. J Neurochem. 2009;110(6):1863ā€“75.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  61. Berson EL, Rosner B, Sandberg MA, Weigel-DiFranco C, Moser A, Brockhurst RJ, et al. Clinical trial of docosahexaenoic acid in patients with retinitis pigmentosa receiving vitamin A treatment. Arch Ophthalmol. 2004;122(9):1297ā€“305.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  62. Hoffman DR, Locke KG, Wheaton DH, Fish GE, Spencer R, Birch DG. A randomized, placebo-controlled clinical trial of docosahexaenoic acid supplementation for X-linked retinitis pigmentosa. Am J Ophthalmol. 2004;137(4):704ā€“18.

    CASĀ  PubMedĀ  Google ScholarĀ 

  63. Berson EL, Rosner B, Sandberg MA, Weigel-DiFranco C, Willett WC. omega-3 intake and visual acuity in patients with retinitis pigmentosa receiving vitamin A. Arch Ophthalmol. 2012;130(6):707ā€“11.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  64. Hodge WG, Barnes D, Schachter HM, Pan YI, Lowcock EC, Zhang L, et al. The evidence for efficacy of omega-3 fatty acids in preventing or slowing the progression of retinitis pigmentosa: a systematic review. Can J Ophthalmol. 2006;41(4):481ā€“90 (Journal canadien dā€™ophtalmologie).

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  65. Allikmets R. A photoreceptor cell-specific ATP-binding transporter gene (ABCR) is mutated in recessive Stargardt macular dystrophy. Nat Genet. 1997;17(1):122.

    CASĀ  PubMedĀ  Google ScholarĀ 

  66. Delori FC, Staurenghi G, Arend O, Dorey CK, Goger DG, Weiter JJ. In vivo measurement of lipofuscin in Stargardtā€™s diseaseā€“Fundus flavimaculatus. Invest Ophthalmol Vis Sci. 1995;36(11):2327ā€“31.

    CASĀ  PubMedĀ  Google ScholarĀ 

  67. Bernstein PS, Tammur J, Singh N, Hutchinson A, Dixon M, Pappas CM, et al. Diverse macular dystrophy phenotype caused by a novel complex mutation in the ELOVL4 gene. Invest Ophthalmol Vis Sci. 2001;42(13):3331ā€“6.

    CASĀ  PubMedĀ  Google ScholarĀ 

  68. Molday RS, Zhang K. Defective lipid transport and biosynthesis in recessive and dominant Stargardt macular degeneration. Prog Lipid Res. 2010;49(4):476ā€“92.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  69. Guillou H, Zadravec D, Martin PG, Jacobsson A. The key roles of elongases and desaturases in mammalian fatty acid metabolism: Insights from transgenic mice. Prog Lipid Res. 2010;49(2):186ā€“99.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  70. Barabas P, Liu A, Xing W, Chen CK, Tong Z, Watt CB, et al. Role of ELOVL4 and very long-chain polyunsaturated fatty acids in mouse models of Stargardt type 3 retinal degeneration. Proc Natl Acad Sci USA. 2013;110(13):5181ā€“6.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  71. Agbaga MP, Brush RS, Mandal MN, Henry K, Elliott MH, Anderson RE. Role of Stargardt-3 macular dystrophy protein (ELOVL4) in the biosynthesis of very long chain fatty acids. Proc Natl Acad Sci USA. 2008;105(35):12843ā€“8.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  72. Dornstauder B, Suh M, Kuny S, Gaillard F, Macdonald IM, Clandinin MT, et al. Dietary docosahexaenoic acid supplementation prevents age-related functional losses and A2E accumulation in the retina. Invest Ophthalmol Vis Sci. 2012;53(4):2256ā€“65.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  73. Querques G, Benlian P, Chanu B, Leveziel N, Coscas G, Soubrane G, et al. DHA supplementation for late onset Stargardt disease: NAT-3 study. Clin Ophthalmol. 2010;4:575ā€“80.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  74. Sun H, Molday RS, Nathans J. Retinal stimulates ATP hydrolysis by purified and reconstituted ABCR, the photoreceptor-specific ATP-binding cassette transporter responsible for Stargardt disease. J Biol Chem. 1999;274(12):8269ā€“81.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  75. Maiti P, Kong J, Kim SR, Sparrow JR, Allikmets R, Rando RR. Small molecule RPE65 antagonists limit the visual cycle and prevent lipofuscin formation. Biochemistry. 2006;45(3):852ā€“60.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  76. Gouze E, Pawliuk R, Pilapil C, Gouze JN, Fleet C, Palmer GD, et al. In vivo gene delivery to synovium by lentiviral vectors. Molecular Ther J Am Soc Gene Ther. 2002;5(4):397ā€“404.

    ArticleĀ  CASĀ  Google ScholarĀ 

  77. Kostic C, Chiodini F, Salmon P, Wiznerowicz M, Deglon N, Hornfeld D, et al. Activity analysis of housekeeping promoters using self-inactivating lentiviral vector delivery into the mouse retina. Gene Ther. 2003;10(9):818ā€“21.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  78. Jiang L, Baehr W. GCAP1 mutations associated with autosomal dominant cone dystrophy. Adv Exp Med Biol. 2010;664:273ā€“82.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  79. Simunovic MP, Moore AT. The cone dystrophies. Eye. 1998;12(Pt 3b):553ā€“65.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  80. Moore AT. Cone and cone-rod dystrophies. J Med Genet. 1992;29(5):289ā€“90.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  81. Shiose S, Chen Y, Okano K, Roy S, Kohno H, Tang J, et al. Toll-like receptor 3 is required for development of retinopathy caused by impaired all-trans-retinal clearance in mice. J Biol Chem. 2011;286(17):15543ā€“55.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  82. Lemp MA. Management of dry eye disease. Am J Manag Care. 2008;14(3 Suppl):S88ā€“101.

    PubMedĀ  Google ScholarĀ 

  83. Pflugfelder SC. Prevalence, burden, and pharmacoeconomics of dry eye disease. Am J Manag Care. 2008;14(3 Suppl):S102ā€“6.

    PubMedĀ  Google ScholarĀ 

  84. Uchino M, Schaumberg DA. Dry eye disease: impact on quality of life and vision. Current Ophthalmol Rep. 2013;1(2):51ā€“7.

    ArticleĀ  Google ScholarĀ 

  85. Schiffman RM, Walt JG, Jacobsen G, Doyle JJ, Lebovics G, Sumner W. Utility assessment among patients with dry eye disease. Ophthalmology. 2003;110(7):1412ā€“9.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  86. Schein OD, Munoz B, Tielsch JM, Bandeen-Roche K, West S. Prevalence of dry eye among the elderly. Am J Ophthalmol. 1997;124(6):723ā€“8.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  87. The definition and classification of dry eye disease: report of the definition and classification subcommittee of the international dry eye workshop. The Ocular Surface. 2007;5(2):75ā€“92.

    Google ScholarĀ 

  88. Tong L, Petznick A, Lee S, Tan J. Choice of artificial tear formulation for patients with dry eye: where do we start? Cornea. 2012;31(Suppl 1):S32ā€“6.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  89. Alves M, Fonseca EC, Alves MF, Malki LT, Arruda GV, Reinach PS, et al. Dry eye disease treatment: a systematic review of published trials and a critical appraisal of therapeutic strategies. Ocul Surf. 2013;11(3):181ā€“92.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  90. Asbell PA, Spiegel S. Ophthalmologist perceptions regarding treatment of moderate to severe dry eye: results of a physician survey. Trans Am Ophthalmol Soc. 2009;107:205ā€“10.

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  91. Kymionis GD, Bouzoukis DI, Diakonis VF, Siganos C. Treatment of chronic dry eye: focus on cyclosporine. Clin Ophthalmol. 2008;2(4):829ā€“36.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  92. Enriquez-de-Salamanca A, Castellanos E, Stern ME, Fernandez I, Carreno E, Garcia-Vazquez C, et al. Tear cytokine and chemokine analysis and clinical correlations in evaporative-type dry eye disease. Mol Vis. 2010;16:862ā€“73.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  93. McDermott AM, Perez V, Huang AJ, Pflugfelder SC, Stern ME, Baudouin C, et al. Pathways of corneal and ocular surface inflammation: a perspective from the cullen symposium. Ocul Surf. 2005;3(4 Suppl):S131ā€“8.

    PubMedĀ  Google ScholarĀ 

  94. Pavesio CE, Decory HH. Treatment of ocular inflammatory conditions with loteprednol etabonate. Br J Ophthalmol. 2008;92(4):455ā€“9.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  95. Miljanovic B, Trivedi KA, Dana MR, Gilbard JP, Buring JE, Schaumberg DA. Relation between dietary n-3 and n-6 fatty acids and clinically diagnosed dry eye syndrome in women. Am J Clin Nutr. 2005;82(4):887ā€“93.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  96. Macsai MS. The role of omega-3 dietary supplementation in blepharitis and meibomian gland dysfunction (an AOS thesis). Trans Am Ophthalmol Soc. 2008;106:336ā€“56.

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  97. Brignole-Baudouin F, Baudouin C, Aragona P, Rolando M, Labetoulle M, Pisella PJ, et al. A multicentre, double-masked, randomized, controlled trial assessing the effect of oral supplementation of omega-3 and omega-6 fatty acids on a conjunctival inflammatory marker in dry eye patients. Acta Ophthalmol. 2011;89(7):e591ā€“7.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  98. Rashid S, Jin Y, Ecoiffier T, Barabino S, Schaumberg DA, Dana MR. Topical omega-3 and omega-6 fatty acids for treatment of dry eye. Arch Ophthalmol. 2008;126(2):219ā€“25.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  99. Kawakita T, Kawabata F, Tsuji T, Kawashima M, Shimmura S, Tsubota K. Effects of dietary supplementation with fish oil on dry eye syndrome subjects: randomized controlled trial. Biomed Res. 2013;34(5):215ā€“20.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  100. Kangari H, Eftekhari MH, Sardari S, Hashemi H, Salamzadeh J, Ghassemi-Broumand M, et al. Short-term consumption of oral omega-3 and dry eye syndrome. Ophthalmology. 2013;120(11):2191ā€“6.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tassos Georgiou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Georgiou, T., Prokopiou, E. (2016). Role of Omega-3 Fatty Acids for Eye Health. In: Hegde, M., Zanwar, A., Adekar, S. (eds) Omega-3 Fatty Acids. Springer, Cham. https://doi.org/10.1007/978-3-319-40458-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40458-5_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40456-1

  • Online ISBN: 978-3-319-40458-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics