Skip to main content

Flax Bio-village Concept

  • Chapter
  • First Online:

Abstract

Today, it is very well established that omega-3 deficiency in modern man’s diet is a major contributing factor for the phenomenal rise in non-communicable diseases, for both its incidences, and severity. Bring back omega-3 fatty acid into food chain has been a global cry. Based on the Danish observation that Eskimos have very low incidences of cardiovascular disease, who eat lot of fish fat rich in omega-3 long-chain fatty acids, fish consumption and fish oil rich in eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) became popular as cardioprotective measure. However, a recent study that has shown a specific desaturase mutation to suit their high-fish-fat diet has casted doubt as to whether the same is applicable to rest of the population taking high carbohydrate diet. It has to be appreciated that alpha-linolenic acid (ALA), obtainable from plant source, is the primary essential fatty acid from which EPA and DHA can be derived in our body. ALA is the only form of omega-3 fatty acid available to vegetarians. Flax seed (also called linseed) is the richest vegetarian, sustainable source of omega-3 fatty acid, and fish source is fast dwindling. However, resourcing ALA from linseed had several challenges. We developed a unique innovative concept called “Flax Bio-village” to deal with these challenges. ALA in India linseed is a neglected crop. To increase the area under production, linseed agriculture had to be made lucrative to the farmer by providing high-yielding variety and also good price to lure him to linseed agriculture. Linseed is not readily edible and does contain certain anti-nutrients, and technology is needed to ensure that human food is enriched with omega-3 resourced from linseed devoid of anti-nutrients. ALA is notoriously unstable and becomes rancid very fast. Omega-3 oil had to be cold press extracted under non-oxidizing conditions and stabilized in emulsion to enrich food products. The leftover cake is processed to develop omega-3-enriched feed mixes (EFMs) that when fed to layer and broiler birds can give omega eggs or omega-3 chicken, respectively. Omega-3 emulsion serves as omega-3 fortifier to enrich dairy products including milk. Flax Bio-village Concept (FBC) therefore successfully brings about backward linkage with the farmer and forward linkage with consumer. Concept constitutes finest example of convergence of agriculture to health and wealth. Concept has been validated, but needs huge support and endorsement of industries, public and private sectors to reap the full benefits, and omega-3 nutritional security and “health for all.”

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Simopolous AP. Evolutionary aspects of omega-3 fatty acids in the food supply. Prostaglandins Leukot Essen Fatty Acids. 199;60:421–429.

    Google Scholar 

  2. Abuajah CI, Ogbonna AC, Osuji CM. Functional components and medicinal properties of food: a review. J Food Sci Tech. 2015;52:2522–9.

    Article  CAS  Google Scholar 

  3. Tur JA, Bibiloni MM, Sureda A, Pons A. Dietary sources of omega 3 fatty acids: public health risks and benefits. Br J Nutr. 2012;107(2):S23–52.

    Article  CAS  PubMed  Google Scholar 

  4. Simopoulos AP. The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed Pharmacother. 2002;56(8):365–79.

    Article  CAS  PubMed  Google Scholar 

  5. Goyens PL, Spilker ME, Zock PL, Katan MB, Mensink RP. Conversion of α-linolenic acid in humans is influenced by the absolute amounts of α-linolenic acid and linoleic acid in the diet and not by their ratio. Am J Clin Nutr. 2006;84(1):44–53.

    CAS  PubMed  Google Scholar 

  6. Hussein H, Ah-Sing E, Wilkinson P, Leach C, Griffin BA, Millward DJ. Long-chain conversion of [13C] linoleic acid and-linolenic acid in response to marked changes in their dietary intake in men. J Lipid Res. 2005;46:269–80.

    Article  CAS  PubMed  Google Scholar 

  7. Bang HO, Dyerberg J, Sinclair HM. The composition of the Eskimo food in north western Greenland. Am J Clin Nutr. 1980;33(12):2657–61.

    CAS  PubMed  Google Scholar 

  8. Fumagalli M, Moltke I, Grarup N, Racimo F, Bjerregaard P, Jørgensen ME, Korneliussen TS, Gerbault P, Skotte L, Linneberg A, Christensen C, Brandslund I, Jørgensen T, Huerta-Sánchez E, Schmidt EB, Pedersen O, Hansen T, Albrechtsen A, Nielsen R. Greenlandic inuit show genetic signatures of diet and climate adaptation. Science. 2015;349(6254):1343–7.

    Article  CAS  PubMed  Google Scholar 

  9. Calder PC. n-3 polyunsaturated fatty acids, inflammation, and inflammatory diseases. Am J Clin Nutr. 2006;83(6):1505S–1519S.

    Google Scholar 

  10. Lenihan-Geels G, Bishop KS, Ferguson LR. Alternative sources of omega-3 fats: can we find a sustainable substitute for fish? Nutrients. 2013;5(4):1301–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dulvy NK, Sadovy Y, Reynolds JD. Extinction vulnerability in marine populations. Fish Fish. 2003;4(1):25–64.

    Article  Google Scholar 

  12. Worm B, Barbier EB, Beaumont N, Duffy JE, Folke C, Halpern BS, Jackson JBC, Lotze HK, Micheli F, Palumbi SR, Sala E, Selkoe KA, Stachowicz JJ, Watson R. Impacts of biodiversity loss on ocean ecosystem services. Science. 2006;314:787.

    Article  CAS  PubMed  Google Scholar 

  13. Strobel C, Jahreis G, Kuhnt K. Survey of n-3 and n-6 polyunsaturated fatty acids in fish and fish products. Lipids Health Dis. 2012;30(11):144.

    Article  Google Scholar 

  14. Bosch AC, O’Neill B, Sigge GO, Kerwath SE, Hoffman LC. Heavy metals in marine fish meat and consumer health: a review. J Sci Food Agric. 2016;96(1):32–48.

    Article  CAS  PubMed  Google Scholar 

  15. Adarme-Vega TC, Lim DKY, Timmins M, Vernen F, Li Y, Schenk PM. Microalgal biofactories: a promising approach towards sustainable omega-3 fatty acid production. Microb Cell Fact. 2012;11:96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Couëdelo L, Boué-Vaysse C, Fonseca L, Montesinos E, Djoukitch S, Combe N, Cansell M. Lymphatic absorption of α-linolenic acid in rats fed flaxseed oil-based emulsion. Br J Nutr. 2011;105(7):1026–35.

    Article  PubMed  Google Scholar 

  17. Barceló-Coblijn G, Murphy EJ. Alpha-linolenic acid and its conversion to longer chain n-3 fatty acids: benefits for human health and a role in maintaining tissue n-3 fatty acid levels. Prog Lipid Res. 2009;48(6):355–74.

    Article  PubMed  Google Scholar 

  18. Davis BC, Kris-Etherton PM. Achieving optimal essential fatty acid status in vegetarians: current knowledge and practical implications. Am J Clin Nutr. 2003;78(3):640S–6S.

    CAS  PubMed  Google Scholar 

  19. Decsi T, Kennedy K. Sex-specific differences in essential fatty acid metabolism. Am J Clin Nutr. 2011;94(6):1914S–9S.

    Article  CAS  PubMed  Google Scholar 

  20. Domenichiello AF, Kitson AP, Bazinet RP. Is docosahexaenoic acid synthesis from α-linolenic acid sufficient to supply the adult brain? Prog Lipid Res. 2015;59:54–66.

    Article  CAS  PubMed  Google Scholar 

  21. Fleming JA, Kris-Etherton PM. The evidence for linolenic acid and cardiovascular disease benefits: comparisons with eicosapentaenoic acid and docosahexaenoic acid. Adv Nutr Int Rev J. 2014;5(6):863S.

    Article  CAS  Google Scholar 

  22. Nara TY, He WS, Tang C, Clarke SD, Nakamura MT. The E-box like sterol regulatory element mediates the suppression of human delta-6 desaturase gene by highly unsaturated fatty acids. Biochem Biophys Res Commun. 2002;296(1):111–7.

    Article  CAS  PubMed  Google Scholar 

  23. Pan A, Chen M, Chowdhury R, Wu JH, Sun Q, Campos H, Mozaffarian D, Hu FB. α-Linolenic acid and risk of cardiovascular disease: a systematic review and meta-analysis. Am J Clin Nutr. 2012;96(6):1262–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Simopoulos AP. Human requirement for N-3 polyunsaturated fatty acids. Poult Sci. 2000;79(7):961–70.

    Article  CAS  PubMed  Google Scholar 

  25. Kim KB, Nam YA, Kim HS, Hayes AW, Lee BM. α-Linolenic acid: nutraceutical, pharmacological and toxicological evaluation. Food Chem Toxicol. 2014;70:163–78.

    Article  CAS  PubMed  Google Scholar 

  26. Hu FB, Stampfer MJ, Manson JE, Rimm EB, Wolk A, Colditz GA, Hennekens CH, Willett WC. Dietary intake of alpha-linolenic acid and risk of fatal ischemic heart disease among women. Am J Clin Nutr. 1999;69(5):890–7.

    CAS  PubMed  Google Scholar 

  27. Albert CM, Oh K, Whang W, Manson JE, Chae CU, Stampfer MJ, Willett WC, Hu FB. Dietary alpha-linolenic acid intake and risk of sudden cardiac death and coronary heart disease. Circulation. 2005;112(21):3232–8.

    Article  CAS  PubMed  Google Scholar 

  28. Erkkila AT, Lehto S, Pyorala K, Uusitupa MIJ. n-3 Fatty acids and 5-y risks of death and cardiovascular disease events in patients with coronary artery disease. J Clin Nutr. 2003;78:65–71.

    Google Scholar 

  29. Baylin A, Kabagambe EK, Ascherio A, Spiegelman D, Campos H. Adipose tissue alpha-linolenic acid and nonfatal acute myocardial infarction in Costa Rica. Circulation. 2003;107(12):1586–91.

    Article  CAS  PubMed  Google Scholar 

  30. Oda E, Hatada K, Katoh K, Kodama M, Nakamura Y, Aizawa Y. A case-control pilot study on n-3 polyunsaturated fatty acid as a negative risk factor for myocardial infarction. Int Heart J. 2005;46(4):583–91.

    Article  CAS  PubMed  Google Scholar 

  31. Djoussé L, Arnett DK, Carr JJ, Eckfeldt JH, Hopkins PN, Province MA, Ellison RC. Investigators of the NHLBI FHS. Dietary linolenic acid is inversely associated with calcified atherosclerotic plaque in the coronary arteries: the National Heart, Lung, and Blood Institute Family Heart Study. Circulation. 2005;111(22):2921–6.

    Article  PubMed  Google Scholar 

  32. Djoussé L, Pankow JS, Eckfeldt JH, Folsom AR, Hopkins PN, Province MA, Hong Y, Ellison RC. Relation between dietary linolenic acid and coronary artery disease in the National Heart, Lung, and Blood Institute Family Heart Study. Am J Clin Nutr. 2001;74:612–9.

    PubMed  Google Scholar 

  33. Rodriguez-Leyva D, Bassett CMC, McCullough R, Pierce GN. The cardiovascular effects of flaxseed and its omega-3 fatty acid, alpha-linolenic acid. Can J Cardiol. 2010;26:489–496.

    Google Scholar 

  34. Ascherio A, Rimm EB, Giovannucci EL, Spiegelman D, Stampfer M, Willett WC. Dietary fat and risk of coronary heart disease in men: cohort follow up study in the United States. BMJ. 1996;313(7049):84–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rajaram S. Health benefits of plant-derived α-linolenic acid. Am J Clin Nutr. 2014;100(Supplement 1):443S–8S.

    Article  CAS  PubMed  Google Scholar 

  36. Spence JD, Thornton T, Muir AD, Westcott ND. The effect of flax seed cultivars with differing content of alpha-linolenic acid and lignans on responses to mental stress. J Am Coll Nutr. 2003;22(6):494–501.

    Article  PubMed  Google Scholar 

  37. Ernesto M, Cardoso AP, Nicala D, Mirione E, Massaza F, Cliff J, Haque MR, Bradbury JH. Persistent konzo and cyanogen toxicity from cassava in northern Mozambique. Acta Trop. 2002;82(3):357–62.

    Article  CAS  PubMed  Google Scholar 

  38. Goya A, Sharma V, Upadhyay N, Gill S, Sihag M. Flax and flaxseed oil: an ancient medicine & modern functional food. J Food Sci Technol. 2014;51(9):1633–53.

    Article  Google Scholar 

  39. Touré A, Xueming X. Flaxseed lignans: source, biosynthesis, metabolism, antioxidant activity, bio-active components, and health benefits. Compr Rev Food Sci Food Saf. 2010;9(3):261–9.

    Article  Google Scholar 

  40. Adlercreutz H. Lignans and human health. Crit Rev Clin Lab Sci. 2007;44(5–6):483–525.

    Article  CAS  PubMed  Google Scholar 

  41. Thomas FX, Robert LS, Black TN, Olejnik N, Wiesenfeld TW, Babu UB, Bryant M, Flynn TJ, Ruggles DI. Effects of flaxseed and defatted flaxseed meal on reproduction and development in rats. Food Chem Toxicol. 2003;41:819–34.

    Article  Google Scholar 

  42. Linseed annual report 2014–15. ICAR-Project coordinating unit (Linseed), C.S.A.U.A&T. campus, Kanpur-208002.

    Google Scholar 

  43. Hegde MV, Ghorpade PB, Hegde NG, Wagh UV, Gosavi PG, Kadam SS. Flax biovillage concept presented at world congress on oils and fats. In: 28th ISF Congress, Sydney, Australia, 27–31 Sept 2009.

    Google Scholar 

  44. Michaelsen KF, Dewey KG, Perez-Exposito AB, Nurhasan M, Lauritzen L, Roos N. Food sources and intake of n-6 and n-3 fatty acids in low-income countries with emphasis on infants, young children (6–24 months), and pregnant and lactating women. Matern Child Nutr. 2011;7(2):124–40.

    Article  PubMed  Google Scholar 

  45. Giltay EJ, Gooren LGJ, Toorians A, Katan MB, Zock PL. Docosahexaenoic acid concentrations are higher in women than in men because of estrogenic effects. Am J Clin Nutr. 2004;80(5):1167–74.

    CAS  PubMed  Google Scholar 

  46. Singh KK, Mridula D, Rehal J, Barnwal P. Flaxseed: a potential source of food, feed and fiber. Crit Rev Food Sci Nutr. 2011;51(3):210–22.

    Article  CAS  PubMed  Google Scholar 

  47. Rodriguez-Leyva D, Bassett CMC, McCullough R, Pierce GN. The cardiovascular effects of flaxseed and its omega-3 fatty acid, alpha-linolenic acid. Can J Cardiol. 2010;26(9):489–96.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Hedge MV, Wagh UV, Khan SA. Omega-3 fatty acid compositions with honey. PCT/IN2005/000163.

    Google Scholar 

  49. Shahidi F, Wanasundara PKJPD. Cyanogenic glycosides of flaxseeds. Antinutrients and phytochemicals in food. Chapter 10, p. 171–185. ACS Symposium Series, vol. 662.

    Google Scholar 

  50. Kasote D, Badhe YS, Hegde MV. Effect of mechanical press oil extraction processing on quality of linseed oil. Ind Crops Prod. 2013;42:10–3.

    Article  CAS  Google Scholar 

  51. Hegde MV, Bhalerao SS, Kadam SS. Composition for chicken feed for production of omega-3 chicken and method thereof. Filed Patent Application No 1971/MUM/2012. Dated 07/02/2014.

    Google Scholar 

  52. Bhalerao SS, Hegde MV, Ranade A, Avari P, Nikam S, Kshirsagar K, Kadam SS. Studies in production of omega-3 chicken meat II. Ind J Poultry Sci. 2010;45(3):273–9.

    Google Scholar 

  53. Bhalerao SS, Hegde MV, Ranade A, Avari P, Nikam S, Kshirsagar K, Kadam SS. Studies in production of omega-3 chicken meat I. Ind J Poultry Sci. 2012;45(3):273–9.

    Google Scholar 

  54. Bhalerao SS, Hegde MV, Katyare SS, Kadam SS. Promotion of omega-3 chicken meat production: an Indian perspective. World’s Poult Sci J. 2014;70:365–73.

    Article  Google Scholar 

  55. Bhalerao SS, Hegde MV, Badhe YS, Kadam SS. Omega-3 fatty acids in the feed improve broiler chick health, presented at 2012 poultry association. Annual Meeting 9–12 at University of Georgia in Athens Georgia, USA.

    Google Scholar 

  56. Bakke JE, Klosterman HJ. A new diglucoside from flaxseed. In: Proceedings of the North Dakota Academy of Science, Grand Forks, North Dak, vol. 10. 1956. p. 18–21.

    Google Scholar 

  57. Zanwar AA, Aswar UM, Hegde MV, Bodhankar SL. Estrogenic and embryo-fetotoxic effects of ethanol extract of Linum usitatissimum in rats. J Complement Integr Med. 2010;7(1):Article 21:1–15.

    Google Scholar 

  58. Hu C, Yuan YV, Kitts DD. Antioxidant activities of the flaxseed lignan secoisolariciresinol diglucoside, its aglycone secoisolariciresinol and the mammalian lignans enterodiol and enterolactone in vitro. Food Chem Toxicol. 2007;45:2219–27.

    Article  CAS  PubMed  Google Scholar 

  59. Prasad K, Mantha SV, Muir AD, Westcott ND. Reduction of hypercholesterolemic atherosclerosis by CDC-flaxseed with very low alpha-linolenic acid. Atherosclerosis. 1998;136:367–75.

    Article  CAS  PubMed  Google Scholar 

  60. Prasad K. Hypocholesterolemic and antiatherosclerotic effect of flax lignan complex isolated from flaxseed. Atherosclerosis. 2005;179:269–75.

    Article  CAS  PubMed  Google Scholar 

  61. Prasad K. Oxidative stress as a mechanism of diabetes in diabetic BB prone rats: effect of secoisolariciresinol diglucoside (SDG). Mol Cell Biochem. 2000;209:89–96.

    Article  CAS  PubMed  Google Scholar 

  62. Prasad K. Secoisolariciresinol diglucoside from flaxseed delays the development of type 2 diabetes in Zucker rat. J Lab Clin Med. 2001;1:32–9.

    Article  Google Scholar 

  63. Prasad K, Mantha SV, Muir AD, Westcott ND. Protective effect of secoisolariciresinol diglucoside against streptozotocin-induced diabetes and its mechanism. Mol Cell Biochem. 2000;206:141–50.

    Article  CAS  PubMed  Google Scholar 

  64. Zanwar AA, Hegde MV, Bodhankar SL. Cardioprotective activity of flax lignan concentrate extracted from seeds of Linum usitatissimum in isoprenalin induced myocardial necrosis in rats. Interdisc Toxicol. 2011;4(2):90–7.

    Article  Google Scholar 

  65. Zanwar AA, Hegde MV, Bodhankar SL. Antihyperlipidemic effect of flax lignan concentrate from seeds of Linum usitatissimum in triton induced hyperlipidemic rats. Int J Pharmacol. 2012;8(5):355–63.

    Article  CAS  Google Scholar 

  66. Mali AV, Chandorkar S, Hegde MV. In vitro anti-metastatic activity of enterolactone, a mammalian lignan derived from flax lignan, and down regulation of matrix metalloproteinases in MCF-7 and MDA MB 231 cell lines. Indian J Cancer. 2011;49(1):181–7.

    Google Scholar 

  67. Penumathsa SV, Koneru S, Thirunavukkarasu M, Zhan L, Prasad K, Maulik N. Secoisolariciresinol diglucoside: relevance to angiogenesis and cardioprotection against ischemia-reperfusion injury. J Pharmacol Expt Ther. 2007;320:951–9.

    Article  CAS  Google Scholar 

  68. Kasote DM, Badhe YS, Zanwar AA, Hegde MV, Deshmukh KK. Hepatoprotective potential of ether insoluble phenolic components from n-butanol fraction (EPC-BF) of flaxseed against CCl4 induced liver damage in rats. J Pharm Bioallied Sci. 2012;4(3):231–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kasote DM, Zanwar AA, Devkar ST, Hegde MV, Deshmukh KV. Immunomodulatory activity of ether insoluble phenolic components of n-butanol fraction (EPC-BF) of flaxseed in rat. Asian Pac J Trop Biomed. 2012;2:S623–S626.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahabaleshwar V. Hegde .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hegde, M.V., Zanwar, A.A., Ghorpade, P.B. (2016). Flax Bio-village Concept. In: Hegde, M., Zanwar, A., Adekar, S. (eds) Omega-3 Fatty Acids. Springer, Cham. https://doi.org/10.1007/978-3-319-40458-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40458-5_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40456-1

  • Online ISBN: 978-3-319-40458-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics