Skip to main content

Omega-3 Fatty Acids and Mitochondrial Functions

  • Chapter
  • First Online:
Omega-3 Fatty Acids

Abstract

Mitochondrial disease (MD) generally refers to a group of disorders that are attributable to malfunctioning mitochondria that are unable to efficiently or effectively generate energy. Some of the most profound effects of MD are seen in the brain and the muscles, while other commonly affected organs include heart, liver, nervous system, eyes, ears, and kidneys. One of the promising nutritional components which may play crucial role in the management of MD is omega-3 polyunsaturated fatty acids (n-3 PUFAs). Animal studies concluded that the omega-3 PUFAs, i.e., ALA and especially EPA and DHA, have some positive effects on functional parameters of mitochondria in various mitochondrial dysfunction-related pathological conditions such as neurodegenerative diseases: Parkinson’s disease, Alzheimer’s disease, aging, cardiovascular diseases, diabetes, and ROS-induced damages. Supplementation with n-3 PUFAs from fish oil (FO) has shown mitochondrial neuroprotective effect in animal models of Parkinson’s disease and aging while clinical trials with patients have shown equivocal results. n-3 PUFAs protected cardiac mitochondria from Ca2+-induced swelling in isoproterenol-treated rats. In animal studies, DHA supplementation brought about significant changes in mitochondria membrane phospholipid components. Similar pattern was noted in cardiac mitochondria from diabetic animal model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vitols E, Linnane AW. Studies on the oxidative metabolism of Saccharomyces cerevisiae II. Morphology and Oxidative Phosphorylation Capacity of Mitochondria and Derived Particles from Baker’s Yeast. J Biophy Biochem Cytol. 1961;9(3):701–10.

    Article  CAS  Google Scholar 

  2. Bellamy D. The endogenous citric acid-cycle intermediates and amino acids of mitochondria. Biochem J. 1962;82(1):218–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Campbell NA, Williamson B, Heyden RJ. Biology: Exploring Life: Boston. Massachusetts: Pearson Prentice Hall; 2006. p. 492.

    Google Scholar 

  4. McBride HM, Neuspiel M, Wasiak S. Mitochondria: more than just a powerhouse. Cur Biol. 2006;16(14):551–60.

    Article  Google Scholar 

  5. Naviaux RK. The spectrum of mitochondrial disease. A primary care physicians guide. 1997;3–10.

    Google Scholar 

  6. Poyton RO, McEwen JE. Crosstalk between nuclear and mitochondrial genomes. Annu Rev Biochem. 1996;65:563–607.

    Article  CAS  PubMed  Google Scholar 

  7. DiMauro S, Schon EA. Mitochondrial respiratory-chain diseases. New Engl J Med. 2003;348(26):2656–68.

    Article  CAS  Google Scholar 

  8. DiMauro S, Andreu AL, Musumeci O, Bonilla E. Diseases of oxidative phosphorylation due to mtDNA mutations. Semin Neurol. 2001;21(3):251–60.

    Article  CAS  PubMed  Google Scholar 

  9. Sirrs S, O’Riley M, Lorne Clarke MDCM, AM FCCMG. Primer on mitochondrial disease: Biochemistry, genetics, and epidemiology. Depression. 2011;500:70s.

    Google Scholar 

  10. McInnes J. Mitochondrial-associated metabolic disorders: foundations, pathologies and recent progress. Nutr Metab. 2013;10(1):1–13.

    Article  Google Scholar 

  11. Gvozdjáková A, Pella D, Kucharská J, Otsuka K, Singh RB. Omega-3-PUFA, Omega-6-PUFA and Mitochondria. Mitochondrial Med. 2008;343–56.

    Google Scholar 

  12. Eckert GP, Lipka U, Muller WE. Omega-3 fatty acids in neurodegenerative diseases: focus on mitochondria. Prostaglandins Leukot Essent Fatty Acids. 2013;88(1):105–14.

    Article  CAS  PubMed  Google Scholar 

  13. Eckert A, et al. Mitochondrial dysfunction—a pharmacological target in Alzheimer’s disease. Mol Neurobiol. 2012;46(1):136–50.

    Article  CAS  PubMed  Google Scholar 

  14. Kidd PM. Neurodegeneration from mitochondrial insufficiency: nutrients, stem cells, growth factors, and prospects for brain rebuilding using integrative management. Alter Med Rev. 2005;10(4):268.

    Google Scholar 

  15. Galli C, White HB Jr, Paoletti R. Lipid alterations and their reversion in the central nervous system of growing rats deficient in essential fatty acids. Lipids. 1971;6(6):378–87.

    Article  CAS  PubMed  Google Scholar 

  16. Bourre, JM. Effects of nutrients (in food) on the structure and function of the nervous system: update on dietary requirements for brain. Part 2: macronutrients. J Nutr Health Aging. 2006;10(5), 386.

    Google Scholar 

  17. Afshordel S, Hagl S, Werner D, Röhner N, Kögel D, Bazan NG, Eckert GP. Omega-3 polyunsaturated fatty acids improve mitochondrial dysfunction in brain aging–Impact of Bcl-2 and NPD-1 like metabolites. Prostaglandins Leukot Essent Fatty Acids. 2015;92:23–31.

    Article  CAS  PubMed  Google Scholar 

  18. Lee LK, Shahar S, Rajab N, Yusoff NAM, Jamal RA, Then SM. The role of long chain omega-3 polyunsaturated fatty acids in reducing lipid peroxidation among elderly patients with mild cognitive impairment: a case-control study. J Nutr Biochem. 2013;24(5):803–8.

    Article  CAS  PubMed  Google Scholar 

  19. Dyall SC, Michael-Titus AT. Neurological benefits of omega-3 fatty acids. NeuroMol Med. 2008;10(4):219–35.

    Article  CAS  Google Scholar 

  20. Pagano G, Aiello Talamanca A, Castello G, Cordero MD, d’Ischia M, Gadaleta MN, et al. Oxidative stress and mitochondrial dysfunction across broad-ranging pathologies: toward mitochondria-targeted clinical strategies. Oxidative Med Cell Longev. 2014; 2014.

    Google Scholar 

  21. Di Lisa F, Kaludercic N, Carpi A, Menabò R, Giorgio M. Mitochondria and vascular pathology. Pharmacol Reports. 2009;61(1):123–30.

    Article  Google Scholar 

  22. Perrotta I, Perrotta E, Sesti S, Cassese M, Mazzulla S. MnSOD expression in human atherosclerotic plaques: an immunohistochemical and ultrastructural study. Cardiovas Pathol. 2013;22(6):428–37.

    Article  CAS  Google Scholar 

  23. Sobenin IA, Sazonova MA, Postnov AY, Bobryshev YV, Orekhov AN. Changes of mitochondria in atherosclerosis: possible determinant in the pathogenesis of the disease. Atherosclerosis. 2013;227(2):283–8.

    Article  CAS  PubMed  Google Scholar 

  24. Guzik B, Sagan A, Ludew D, Mrowiecki W, Chwała M, Bujak-Gizycka B, et al. Mechanisms of oxidative stress in human aortic aneurysms—association with clinical risk factors for atherosclerosis and disease severity. Inter J Cardiol. 2013;168(3):2389–96.

    Article  Google Scholar 

  25. Stanley WC, Hoppel CL. Mitochondrial dysfunction in heart failure: potential for therapeutic interventions? Cardiovas Res. 2000;45(4):805–6.

    Article  CAS  Google Scholar 

  26. Jarreta D, Orús J, Barrientos A, Miró O, Roig E, Heras M, et al. Mitochondrial function in heart muscle from patients with idiopathic dilated cardiomyopathy. Cardiovas Res. 2000;45(4):860–5.

    Article  CAS  Google Scholar 

  27. McInnes J. Mitochondrial-associated metabolic disorders: foundations, pathologies and recent progress. Nutr and Metab. 2013;10(1):1–13.

    Article  Google Scholar 

  28. Guzy RD, Hoyos B, Robin E, Chen H, Liu L, Mansfield KD, et al. Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing. Cell Metab. 2005;1(6):401–8.

    Article  CAS  PubMed  Google Scholar 

  29. Murray AJ, Edwards LM, Clarke K. Mitochondria and heart failure. Curr Opin Clin Nutr Metab Care. 2007;10(6):704–11.

    Article  CAS  PubMed  Google Scholar 

  30. Panasiuk OS, Shysh AM, Moĭbenko OO. The influence of dietary omega-3 polyunsaturated fatty acids on functional parameters of myocardial mitochondria during isoproterenol-induced heart injury. FiziolZh (Kiev, Ukraine: 1994). 2013;60(1):18–24.

    Google Scholar 

  31. Panasiuk O, Shysh A, Bondarenko A, Moibenko O. Omega-3 polyunsaturated fatty acid-enriched diet differentially protects two subpopulations of myocardial mitochondria against Ca2 + -induced injury. Expt Clin Cardiol. 2013;18(1):e60.

    Google Scholar 

  32. Pepe S. Effect of dietary polyunsaturated fatty acids on age-related changes in cardiac mitochondrial membranes. Expt Gerontol. 2005;40(5):369–76.

    Article  CAS  Google Scholar 

  33. Dabkowski ER, O’Connell KA, Xu W, Ribeiro Jr RF, Hecker PA, Shekar KC, et al. Docosahexaenoic acid supplementation alters key properties of cardiac mitochondria and modestly attenuates development of left ventricular dysfunction in pressure overload-induced heart failure. Cardiovas Drugs Ther. 2013; 27(6):499–510.

    Google Scholar 

  34. Galvao TF, Khairallah RJ, Dabkowski ER, Brown BH, Hecker PA, O’Connell KA, et al. Marine n3 polyunsaturated fatty acids enhance resistance to mitochondrial permeability transition in heart failure but do not improve survival. Physiol-Heart Circulatory Physiol. 2013;304(1):H12–21.

    Article  CAS  Google Scholar 

  35. Khairallah RJ, Sparagna GC, Khanna N, O’Shea KM, Hecker PA, Kristian T, et al. Dietary supplementation with docosahexaenoic acid, but not eicosapentaenoic acid, dramatically alters cardiac mitochondrial phospholipid fatty acid composition and prevents permeability transition. Biochima et Biophysica Acta-Bioenergetics. 2010; 1797(8):1555–62.

    Google Scholar 

  36. Stanley WC, Khairallah RJ, Dabkowski ER. Update on lipids and mitochondrial function: impact of dietary n-3 polyunsaturated fatty acids. Curr Opin Clin Nutr Metabol care. 2012; 15(2):122.

    Google Scholar 

  37. Chen L, Magliano DJ, Zimmet PZ. The worldwide epidemiology of type 2 diabetes mellitus—present and future perspectives. Nat Rev Endocrinol. 2012;8(4):228–36.

    Article  CAS  Google Scholar 

  38. Khan S, Raghuram GV, Bhargava A, Pathak N, Chandra DH, Jain SK, et al. Role and clinical significance of lymphocyte mitochondrial dysfunction in type 2 diabetes mellitus. Translational Res. 2011;158(6):344–59.

    Article  CAS  Google Scholar 

  39. Michikawa Y, Mazzucchelli F, Bresolin N, Scarlato G, Attardi G. Aging-dependent large accumulation of point mutations in the human mtDNA control region for replication. Science. 1999;286(5440):774–9.

    Article  CAS  PubMed  Google Scholar 

  40. Petersen KF, Befroy D, Dufour S, Dziura J, Ariyan C, Rothman DL, et al. Mitochondrial dysfunction in the elderly: possible role in insulin resistance. Science. 2003;300(5622):1140–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Leloup C, Tourrel-Cuzin C, Magnan C, Karaca M, Castel J, Carneiro L, et al. Mitochondrial reactive oxygen species are obligatory signals for glucose-induced insulin secretion. Diabetes. 2009;58(3):673–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhukovs’ka AS, ShyshAM Moĭbenko OO. Study of the impact of omega-3 PUFA on fatty acid composition of heart, respiration and swelling of mitochondria of the heart in diabetes. FiziolZh. 2012;58(2):16–26.

    Google Scholar 

  43. Taneda S, Honda K, Tomidokoro K, Uto K, Nitta K, Oda H. Eicosapentaenoic acid restores diabetic tubular injury through regulating oxidative stress and mitochondrial apoptosis. Am J Physiol Renal Physiol. 2010;299(6):F1451–61.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surendra S. Katyare .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Katyare, S.S., Mali, A.V. (2016). Omega-3 Fatty Acids and Mitochondrial Functions. In: Hegde, M., Zanwar, A., Adekar, S. (eds) Omega-3 Fatty Acids. Springer, Cham. https://doi.org/10.1007/978-3-319-40458-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40458-5_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40456-1

  • Online ISBN: 978-3-319-40458-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics