Skip to main content

Linseed as a Functional Food for the Management of Obesity

  • Chapter
  • First Online:
Omega-3 Fatty Acids

Abstract

Linseed has been cultivated for at least 8000 years and is now a major oilseed crop in many countries. The major components with potential therapeutic uses are the essential n-3 fatty acid, α-linolenic acid (ALA), lignans such as secoisolariciresinol diglucoside (SDG) and carbohydrates such as mucilages containing arabinoxylans. ALA is orally bioavailable and may be stored or converted into longer chain n-3 fatty acids such as eicosapentanenoic acid (EPA) and docosahexaenoic acid (DHA) and other bioactive lipid metabolites. In most studies in humans, whole linseed improves insulin sensitivity, linseed flour but not oil attenuates the pro-inflammatory state and linseed oil but not the lignan fraction benefits osteoporotic bone in obese or overweight patients. SDG is metabolised in the intestine to the mammalian lignans, enterodiol and enterolactone. Treatment with SDG may improve metabolic parameters, decrease the progression of atherosclerosis and protect the heart, liver and kidneys but does not seem to decrease obesity or blood pressure. The fibre present in linseeds may improve gastrointestinal function. Thus, there is considerable evidence that the constituents of linseed, especially ALA and probably SDG and fibre to a lesser extent, either separately or combined, can be defined as a functional food as they improve the multi-organ changes induced by obesity. However, the patient groups that will benefit most still need to be defined, and this may also be helped by clearer definition of the molecular mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hruby A, Hu FB. The epidemiology of obesity: a big picture. Pharmacoeconomics. 2015;33(7):673–89.

    Google Scholar 

  2. Trigueros L, Pena S, Ugidos AV, Sayas-Barbera E, Perez-Alvarez JA, Sendra E. Food ingredients as anti-obesity agents: a review. Crit Rev Food Sci Nutr. 2013;53(9):929–42.

    Article  CAS  PubMed  Google Scholar 

  3. Kvavadze E, Bar-Yosef O, Belfer-Cohen A, Boaretto E, Jakeli N, Matskevich Z, et al. 30,000-year-old wild flax fibers. Science. 2009;325(5946):1359.

    Article  CAS  PubMed  Google Scholar 

  4. Bergfjord C, Karg S, Rast-Eicher A, Nosch ML, Mannering U, Allaby RG, et al. Comment on “30,000-year-old wild flax fibers”. Science. 2010;328(5986):1634.

    Article  CAS  PubMed  Google Scholar 

  5. Fu Y-B. Genetic evidence for early flax domestication with capsular dehiscence. Genet Resour Crop Ev. 2011;58(8):1119–28.

    Article  Google Scholar 

  6. van Zeist W, Bakker-Heeres JAH. Evidence for linseed cultivation before 6000 BC. J Archaeol Sci. 1975;2(3):215–9.

    Article  Google Scholar 

  7. Allaby RG, Peterson GW, Merriwether DA, Fu YB. Evidence of the domestication history of flax (Linum usitatissimum L.) from genetic diversity of the sad2 locus. Theor Appl Genet. 2005;112(1):58–65.

    Article  CAS  PubMed  Google Scholar 

  8. Goyal A, Sharma V, Upadhyay N, Gill S, Sihag M. Flax and flaxseed oil: an ancient medicine & modern functional food. J Food Sci Technol. 2014;51(9):1633–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Shim YY, Gui B, Arnison PG, Wang Y, Reaney MJT. Flaxseed (Linum usitatissimum L.) bioactive compounds and peptide nomenclature: a review. Trends Food Sci Technol. 2014;38(1):5–20.

    Article  CAS  Google Scholar 

  10. Casa R, Russell G, Cascio LoB, Rossini F. Environmental effects on linseed (Linum usitatissimum L.) yield and growth of flax at different stand densities. Eur J Agron. 1999;11(3–4):267–78.

    Article  Google Scholar 

  11. Factfish. Linseed, production quantity (tons)—for all countries 2014. Available from: http://www.factfish.com/statistic/linseed,%20production%20quantity.

  12. FAOSTAT. Food and Agriculture Organization of the United Nations Statistics Division 2014. Available from: http://faostat3.fao.org/home/E.

  13. Morris DH. Description and Composition of Flax (Chap. 1). In: Flax—a health and nutrition primer. 4 ed. Flax Council of Canada; 2007. pp. 9–21. Available from: http://www.flaxcouncil.ca/english/pdf/FlxPrmr_4ed_Chpt1.pdf.

  14. Mueller K, Eisner P, Yoshie-Stark Y, Nakada R, Kirchhoff E. Functional properties and chemical composition of fractionated brown and yellow linseed meal (Linum usitatissimum L.). J Food Eng. 2010;98(4):453–60.

    Article  CAS  Google Scholar 

  15. Khattab RY, Zeitoun MA. Quality evaluation of flaxseed oil obtained by different extraction techniques. LWT—Food Sci Technol. 2013;53(1):338–45.

    Article  CAS  Google Scholar 

  16. Hosseinian FS, Beta T. Patented techniques for the extraction and isolation of secoisolari-ciresinol diglucoside from flaxseed. Recent Pat Food Nutr Agric. 2009;1(1):25–31.

    Article  CAS  PubMed  Google Scholar 

  17. Zhang Z-S, Wang L-J, Li D, Jiao S-S, Chen XD, Mao Z-H. Ultrasound-assisted extraction of oil from flaxseed. Sep Purif Technol. 2008;62(1):192–8.

    Article  CAS  Google Scholar 

  18. Oomah BD. Processing of flaxseed fiber, oil, protein, and lignan. In: Thompson LU, Cunnane SC, editors. Flaxseed in human nutrition. 2 ed. AOCS Publishing; 2003. Available from: http://dx.doi.org/10.1201/9781439831915.ch20.

  19. Carneiro HCF, Tonon RV, Grosso CRF, Hubinger MD. Encapsulation efficiency and oxidative stability of flaxseed oil microencapsulated by spray drying using different combinations of wall materials. J Food Eng. 2013;115(4):443–51.

    Article  CAS  Google Scholar 

  20. Toolkit HEAR. Heart failure management: National Heart Foundation of Australia; 2014. Available from: http://www.heartonline.org.au/HFM/risk-and-symptom-management/Pages/Risk-factor-modification.aspx.

  21. Burdge GC, Calder PC. Conversion of α-linolenic acid to longer-chain polyunsaturated fatty acids in human adults. Reprod Nutr Dev. 2005;45(5):581–97.

    Article  CAS  PubMed  Google Scholar 

  22. Druart C, Neyrinck AM, Vlaeminck B, Fievez V, Cani PD, Delzenne NM. Role of the lower and upper intestine in the production and absorption of gut microbiota-derived PUFA metabolites. PLoS ONE. 2014;9(1):e87560.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Mayes C, Burdge GC, Bingham A, Murphy JL, Tubman R, Wootton SA. Variation in [U-13C] α-linolenic acid absorption, β-oxidation and conversion to docosahexaenoic acid in the pre-term infant fed a DHA-enriched formula. Pediatr Res. 2006;59(2):271–5.

    Article  CAS  PubMed  Google Scholar 

  24. Austria JA, Richard MN, Chahine MN, Edel AL, Malcolmson LJ, Dupasquier CM, et al. Bioavailability of alpha-linolenic acid in subjects after ingestion of three different forms of flaxseed. J Am Coll Nutr. 2008;27(2):214–21.

    Article  PubMed  Google Scholar 

  25. Patenaude A, Rodriguez-Leyva D, Edel AL, Dibrov E, Dupasquier CMC, Austria JA, et al. Bioavailability of α-linolenic acid from flaxseed diets as a function of the age of the subject. Eur J Clin Nutr. 2009;63(9):1123–9.

    Article  CAS  PubMed  Google Scholar 

  26. Couëdelo L, Boué-Vaysse C, Fonseca L, Montesinos E, Djoukitch S, Combe N, et al. Lymphatic absorption of α-linolenic acid in rats fed flaxseed oil-based emulsion. Br J Nutr. 2011;105(7):1026–35.

    Article  PubMed  CAS  Google Scholar 

  27. Barceló-Coblijn G, Murphy EJ. Alpha-linolenic acid and its conversion to longer chain n-3 fatty acids: Benefits for human health and a role in maintaining tissue n-3 fatty acid levels. Prog Lipid Res. 2009;48(6):355–74.

    Article  PubMed  CAS  Google Scholar 

  28. Lin YH, Salem N. Whole body distribution of deuterated linoleic and α-linolenic acids and their metabolites in the rat. J Lipid Res. 2007;48(12):2709–24.

    Article  CAS  PubMed  Google Scholar 

  29. Poudyal H, Panchal SK, Diwan V, Brown L. Omega-3 fatty acids and metabolic syndrome: Effects and emerging mechanisms of action. Prog Lipid Res. 2011;50(4):372–87.

    Article  CAS  PubMed  Google Scholar 

  30. Leyton J, Drury PJ, Crawford MA. Differential oxidation of saturated and unsaturated fatty acids in vivo in the rat. Br J Nutr. 1987;57(03):383–93.

    Article  CAS  PubMed  Google Scholar 

  31. Poumes-Ballihaut C, Langelier B, Houlier F, Alessandri JM, Durand G, Latge C, et al. Comparative bioavailability of dietary α-linolenic and docosahexaenoic acids in the growing rat. Lipids. 2001;36(8):793–800.

    Article  CAS  PubMed  Google Scholar 

  32. Burdge G. α-linolenic acid metabolism in men and women: nutritional and biological implications. Curr Opin Clin Nutr Metab Care. 2004;7(2):137–44.

    Article  CAS  PubMed  Google Scholar 

  33. Burdge GC. Metabolism of α-linolenic acid in humans. Prostaglandins Leukot Essent Fatty Acids. 2006;75(3):161–8.

    Article  CAS  PubMed  Google Scholar 

  34. Kelley DS, Nelson GJ, Love JE, Branch LB, Taylor PC, Schmidt PC, et al. Dietary α-linolenic acid alters tissue fatty acid composition, but not blood lipids, lipoproteins or coagulation status in humans. Lipids. 1993;28(6):533–7.

    Article  CAS  PubMed  Google Scholar 

  35. Pawlosky RJ, Hibbeln JR, Novotny JA, Salem N. Physiological compartmental analysis of α-linolenic acid metabolism in adult humans. J Lipid Res. 2001;42(8):1257–65.

    CAS  PubMed  Google Scholar 

  36. Goyens PLL, Spilker ME, Zock PL, Katan MB, Mensink RP. Compartmental modeling to quantify α-linolenic acid conversion after longer term intake of multiple tracer boluses. J Lipid Res. 2005;46(7):1474–83.

    Article  CAS  PubMed  Google Scholar 

  37. Burdge GC, Wootton SA. Conversion of α-linolenic acid to eicosapentaenoic, docosapentaenoic and docosahexaenoic acids in young women. Br J Nutr. 2002;88(4):411–20.

    Article  CAS  PubMed  Google Scholar 

  38. Nelson TL, Stevens JR, Hickey MS. Inflammatory markers are not altered by an eight week dietary α-linolenic acid intervention in healthy abdominally obese adult males and females. Cytokine. 2007;38(2):101–6.

    Article  CAS  PubMed  Google Scholar 

  39. Faintuch J, Horie LM, Barbeiro HV, Barbeiro DF, Soriano FG, Ishida RK, et al. Systemic inflammation in morbidly obese subjects: response to oral supplementation with alpha-linolenic acid. Obes Surg. 2007;17(3):341–7.

    Article  PubMed  Google Scholar 

  40. Wu H, Pan A, Yu Z, Qi Q, Lu L, Zhang G, et al. Lifestyle counseling and supplementation with flaxseed or walnuts influence the management of metabolic syndrome. J Nutr. 2010;140(11):1937–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hutchins AM, Brown BD, Cunnane SC, Domitrovich SG, Adams ER, Bobowiec CE. Daily flaxseed consumption improves glycemic control in obese men and women with pre-diabetes: a randomized study. Nutr Res. 2013;33(5):367–75.

    Article  CAS  PubMed  Google Scholar 

  42. Rhee Y, Brunt A. Flaxseed supplementation improved insulin resistance in obese glucose intolerant people: a randomized crossover design. Nutr J. 2011;10:44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bloedon LT, Balikai S, Chittams J, Cunnane SC, Berlin JA, Rader DJ, et al. Flaxseed and cardiovascular risk factors: results from a double blind, randomized, controlled clinical trial. J Am Coll Nutr. 2008;27(1):65–74.

    Article  CAS  PubMed  Google Scholar 

  44. Egert S, Fobker M, Andersen G, Somoza V, Erbersdobler HF, Wahrburg U. Effects of dietary α-linolenic acid, eicosapentaenoic acid or docosahexaenoic acid on parameters of glucose metabolism in healthy volunteers. Ann Nutr Metab. 2008;53(3–4):182–7.

    Article  CAS  PubMed  Google Scholar 

  45. Barre DE, Mizier-Barre KA, Griscti O, Hafez K. High dose flaxseed oil supplementation may affect fasting blood serum glucose management in human type 2 diabetics. J Oleo Sci. 2008;57(5):269–73.

    Article  CAS  PubMed  Google Scholar 

  46. Makki K, Froguel P, Wolowczuk I. Adipose tissue in obesity-related inflammation and insulin resistance: cells, cytokines, and chemokines. ISRN Inflamm. 2013;2013:139239.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Antuna-Puente B, Feve B, Fellahi S, Bastard JP. Adipokines: the missing link between insulin resistance and obesity. Diabetes Metab. 2008;34(1):2–11.

    Article  CAS  PubMed  Google Scholar 

  48. Faintuch J, Bortolotto LA, Marques PC, Faintuch JJ, Franca JI, Cecconello I. Systemic inflammation and carotid diameter in obese patients: pilot comparative study with flaxseed powder and cassava powder. Nutr Hosp. 2011;26(1):208–13.

    CAS  PubMed  Google Scholar 

  49. Kristensen M, Damgaard TW, Sorensen AD, Raben A, Lindelov TS, Thomsen AD, et al. Whole flaxseeds but not sunflower seeds in rye bread reduce apparent digestibility of fat in healthy volunteers. Eur J Clin Nutr. 2008;62(8):961–7.

    Article  CAS  PubMed  Google Scholar 

  50. Cohen L, Meira J, Cosendey GM, de Souza AF, Mattos F, Carneiro JR, et al. Evaluation of the influence of whole and defatted flaxseed on satiety, glucose, and leptin levels of women in the late postoperative stage of bariatric surgery. Obes Surg. 2013;23(2):157–66.

    Article  PubMed  Google Scholar 

  51. Rose DP, Vona-Davis L. Interaction between menopausal status and obesity in affecting breast cancer risk. Maturitas. 2010;66(1):33–8.

    Article  PubMed  Google Scholar 

  52. Tworoger SS, Zhang X, Eliassen AH, Qian J, Colditz GA, Willett WC, et al. Inclusion of endogenous hormone levels in risk prediction models of postmenopausal breast cancer. J Clin Oncol. 2014;32(28):3111–7.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Missmer SA, Eliassen AH, Barbieri RL, Hankinson SE. Endogenous estrogen, androgen, and progesterone concentrations and breast cancer risk among postmenopausal women. J Natl Cancer Inst. 2004;96(24):1856–65.

    Article  CAS  PubMed  Google Scholar 

  54. Thomas HV, Reeves GK, Key TJ. Endogenous estrogen and postmenopausal breast cancer: a quantitative review. Cancer Cause Control. 1997;8(6):922–8.

    Article  CAS  Google Scholar 

  55. Sturgeon SR, Heersink JL, Volpe SL, Bertone-Johnson ER, Puleo E, Stanczyk FZ, et al. Effect of dietary flaxseed on serum levels of estrogens and androgens in postmenopausal women. Nutr Cancer. 2008;60(5):612–8.

    Article  PubMed  Google Scholar 

  56. Kim Y, Ilich JZ. Implications of dietary α-linolenic acid in bone health. Nutrition. 2011;27(11–12):1101–7.

    Article  CAS  PubMed  Google Scholar 

  57. Nestel PJ, Pomeroy SE, Sasahara T, Yamashita T, Liang YL, Dart AM, et al. Arterial compliance in obese subjects is improved with dietary plant n-3 fatty acid from flaxseed oil despite increased LDL oxidizability. Arterioscler Thromb Vasc Biol. 1997;17(6):1163–70.

    Article  CAS  PubMed  Google Scholar 

  58. Caligiuri SP, Edel AL, Aliani M, Pierce GN. Flaxseed for hypertension: implications for blood pressure regulation. Curr Hypertens Rep. 2014;16(12):499.

    Article  PubMed  Google Scholar 

  59. Baxheinrich A, Stratmann B, Lee-Barkey YH, Tschoepe D, Wahrburg U. Effects of a rapeseed oil-enriched hypoenergetic diet with a high content of α-linolenic acid on body weight and cardiovascular risk profile in patients with the metabolic syndrome. Br J Nutr. 2012;108(4):682–91.

    Article  CAS  PubMed  Google Scholar 

  60. Egert S, Baxheinrich A, Lee-Barkey YH, Tschoepe D, Wahrburg U, Stratmann B. Effects of an energy-restricted diet rich in plant-derived α-linolenic acid on systemic inflammation and endothelial function in overweight-to-obese patients with metabolic syndrome traits. Br J Nutr. 2014;112(8):1315–22.

    Article  CAS  PubMed  Google Scholar 

  61. Takeuchi H, Sakurai C, Noda R, Sekine S, Murano Y, Wanaka K, et al. Antihypertensive effect and safety of dietary α-linolenic acid in subjects with high-normal blood pressure and mild hypertension. J Oleo Sci. 2007;56(7):347–60.

    Article  CAS  PubMed  Google Scholar 

  62. Vuksan V, Whitham D, Sievenpiper JL, Jenkins AL, Rogovik AL, Bazinet RP, et al. Supplementation of conventional therapy with the novel grain Salba (Salvia hispanica L.) improves major and emerging cardiovascular risk factors in type 2 diabetes: results of a randomized controlled trial. Diabetes Care. 2007;30(11):2804–10.

    Article  CAS  PubMed  Google Scholar 

  63. Wei M, Xiong P, Zhang L, Fei M, Chen A, Li F. Perilla oil and exercise decrease expressions of tumor necrosis factor-α, plasminogen activator inhibitor-1 and highly sensitive C-reactive protein in patients with hyperlipidemia. J Tradit Chin Med. 2013;33(2):170–5.

    Article  PubMed  Google Scholar 

  64. Poudyal H, Panchal SK, Ward LC, Brown L. Effects of ALA, EPA and DHA in high-carbohydrate, high-fat diet-induced metabolic syndrome in rats. J Nutr Biochem. 2013;24(6):1041–52.

    Article  CAS  PubMed  Google Scholar 

  65. Poudyal H, Kumar SA, Iyer A, Waanders J, Ward LC, Brown L. Responses to oleic, linoleic and α-linolenic acids in high-carbohydrate, high-fat diet-induced metabolic syndrome in rats. J Nutr Biochem. 2013;24(7):1381–92.

    Article  CAS  PubMed  Google Scholar 

  66. Velasquez MT, Bhathena SJ, Ranich T, Schwartz AM, Kardon DE, Ali AA, et al. Dietary flaxseed meal reduces proteinuria and ameliorates nephropathy in an animal model of type II diabetes mellitus. Kidney Int. 2003;64(6):2100–7.

    Article  CAS  PubMed  Google Scholar 

  67. Chechi K, Yasui N, Ikeda K, Yamori Y, KC S. Flax oil-mediated activation of PPAR-γ correlates with reduction of hepatic lipid accumulation in obese spontaneously hypertensive/NDmcr-cp rats, a model of the metabolic syndrome. Br J Nutr. 2010;104(9):1313–21.

    Article  CAS  PubMed  Google Scholar 

  68. Bhathena SJ, Ali AA, Haudenschild C, Latham P, Ranich T, Mohamed AI, et al. Dietary flaxseed meal is more protective than soy protein concentrate against hypertriglyceridemia and steatosis of the liver in an animal model of obesity. J Am Coll Nutr. 2003;22(2):157–64.

    Article  PubMed  Google Scholar 

  69. Hanke D, Zahradka P, Mohankumar SK, Clark JL, Taylor CG. A diet high in α-linolenic acid and monounsaturated fatty acids attenuates hepatic steatosis and alters hepatic phospholipid fatty acid profile in diet-induced obese rats. Prostaglandins Leukot Essent Fatty Acids. 2013;89(6):391–401.

    Article  CAS  PubMed  Google Scholar 

  70. Gillam M, Noto A, Zahradka P, Taylor CG. Improved n-3 fatty acid status does not modulate insulin resistance in fa/fa Zucker rats. Prostaglandins Leukot Essent Fatty Acids. 2009;81(5–6):331–9.

    Article  CAS  PubMed  Google Scholar 

  71. Baranowski M, Enns J, Blewett H, Yakandawala U, Zahradka P, Taylor CG. Dietary flaxseed oil reduces adipocyte size, adipose monocyte chemoattractant protein-1 levels and T-cell infiltration in obese, insulin-resistant rats. Cytokine. 2012;59(2):382–91.

    Article  CAS  PubMed  Google Scholar 

  72. Cintra DE, Ropelle ER, Moraes JC, Pauli JR, Morari J, Souza CT, et al. Unsaturated fatty acids revert diet-induced hypothalamic inflammation in obesity. PLoS ONE. 2012;7(1):e30571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Hara T, Hirasawa A, Sun Q, Sadakane K, Itsubo C, Iga T, et al. Novel selective ligands for free fatty acid receptors GPR120 and GPR40. Naunyn Schmiedebergs Arch Pharmacol. 2009;380(3):247–55.

    Article  CAS  PubMed  Google Scholar 

  74. Fang XL, Shu G, Zhang ZQ, Wang SB, Zhu XT, Gao P, et al. Roles of α-linolenic acid on IGF-I secretion and GH/IGF system gene expression in porcine primary hepatocytes. Mol Biol Rep. 2012;39(12):10987–96.

    Article  CAS  PubMed  Google Scholar 

  75. Poudyal H, Panchal SK, Waanders J, Ward L, Brown L. Lipid redistribution by α-linolenic acid-rich chia seed inhibits stearoyl-CoA desaturase-1 and induces cardiac and hepatic protection in diet-induced obese rats. J Nutr Biochem. 2012;23(2):153–62.

    Article  CAS  PubMed  Google Scholar 

  76. Poudyal H, Panchal SK, Ward LC, Waanders J, Brown L. Chronic high-carbohydrate, high-fat feeding in rats induces reversible metabolic, cardiovascular, and liver changes. Am J Physiol Endocrinol Metab. 2012;302(12):E1472–82.

    Article  CAS  PubMed  Google Scholar 

  77. Hofacer R, Magrisso IJ, Jandacek R, Rider T, Tso P, Benoit SC, et al. Omega-3 fatty acid deficiency increases stearoyl-CoA desaturase expression and activity indices in rat liver: positive association with non-fasting plasma triglyceride levels. Prostaglandins Leukot Essent Fatty Acids. 2012;86(1–2):71–7.

    Article  CAS  PubMed  Google Scholar 

  78. Poudyal H, Brown L. Stearoyl-CoA desaturase: a vital checkpoint in the development and progression of obesity. Endocr Metab Immune Disord Drug Targets. 2011;11(3):217–31.

    Article  CAS  PubMed  Google Scholar 

  79. Paton CM, Ntambi JM. Biochemical and physiological function of stearoyl-CoA desaturase. Am J Physiol Endocrinol Metab. 2009;297(1):E28–37.

    Article  CAS  PubMed  Google Scholar 

  80. Flowers MT, Ntambi JM. Stearoyl-CoA desaturase and its relation to high-carbohydrate diets and obesity. Biochim Biophys Acta. 2009;1791(2):85–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Sampath H, Ntambi JM. The role of stearoyl-CoA desaturase in obesity, insulin resistance, and inflammation. Ann NY Acad Sci. 2011;1243:47–53.

    Article  CAS  PubMed  Google Scholar 

  82. Liu X, Strable MS, Ntambi JM. Stearoyl CoA desaturase 1: role in cellular inflammation and stress. Adv Nutr. 2011;2(1):15–22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Hirasawa A, Tsumaya K, Awaji T, Katsuma S, Adachi T, Yamada M, et al. Free fatty acids regulate gut incretin glucagon-like peptide-1 secretion through GPR120. Nat Med. 2005;11(1):90–4.

    Article  CAS  PubMed  Google Scholar 

  84. Kogure R, Toyama K, Hiyamuta S, Kojima I, Takeda S. 5-Hydroxy-eicosapentaenoic acid is an endogenous GPR119 agonist and enhances glucose-dependent insulin secretion. Biochem Biophys Res Commun. 2011;416(1–2):58–63.

    Article  CAS  PubMed  Google Scholar 

  85. Poudyal H, Brown L. The role of n-3 polyunsaturated fatty acids in human heart failure. Endocr Metab Immune Disord Drug Targets. 2013;13(1):105–17.

    Article  CAS  PubMed  Google Scholar 

  86. Wang W, Zhu J, Lyu F, Panigrahy D, Ferrara KW, Hammock B, et al. Omega-3 polyunsaturated fatty acids-derived lipid metabolites on angiogenesis, inflammation and cancer. Prostaglandins Other Lipid Mediat. 2014;113–115:13–20.

    Article  PubMed  CAS  Google Scholar 

  87. Caligiuri SP, Love K, Winter T, Gauthier J, Taylor CG, Blydt-Hansen T, et al. Dietary linoleic acid and α-linolenic acid differentially affect renal oxylipins and phospholipid fatty acids in diet-induced obese rats. J Nutr. 2013;143(9):1421–31.

    Article  CAS  PubMed  Google Scholar 

  88. Serhan CN, Gotlinger K, Hong S, Arita M. Resolvins, docosatrienes, and neuroprotectins, novel omega-3-derived mediators, and their aspirin-triggered endogenous epimers: an overview of their protective roles in catabasis. Prostaglandins Other Lipid Mediat. 2004;73(3–4):155–72.

    Article  CAS  PubMed  Google Scholar 

  89. Serhan CN, Dalli J, Colas RA, Winkler JW, Chiang N. Protectins and maresins: new pro-resolving families of mediators in acute inflammation and resolution bioactive metabolome. Biochim Biophys Acta. 2014;1851(4):397–413.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Kohli P, Levy BD. Resolvins and protectins: mediating solutions to inflammation. Br J Pharmacol. 2009;158(4):960–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Neuhofer A, Zeyda M, Mascher D, Itariu BK, Murano I, Leitner L, et al. Impaired local production of proresolving lipid mediators in obesity and 17-HDHA as a potential treatment for obesity-associated inflammation. Diabetes. 2013;62(6):1945–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Hellmann J, Tang Y, Kosuri M, Bhatnagar A, Spite M. Resolvin D1 decreases adipose tissue macrophage accumulation and improves insulin sensitivity in obese-diabetic mice. FASEB J. 2011;25(7):2399–407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Poluzzi E, Piccinni C, Raschi E, Rampa A, Recanatini M, De Ponti F. Phytoestrogens in postmenopause: the state of the art from a chemical, pharmacological and regulatory perspective. Curr Med Chem. 2014;21(4):417–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Touré A, Xueming X. Flaxseed lignans: Source, biosynthesis, metabolism, antioxidant activity, bio-active components, and health benefits. Compr Rev Food Sci F. 2010;9(3):261–9.

    Article  Google Scholar 

  95. Kamal-Eldin A, Peerlkamp N, Johnsson P, Andersson R, Andersson RE, Lundgren LN, et al. An oligomer from flaxseed composed of secoisolariciresinoldiglucoside and 3-hydroxy-3-methyl glutaric acid residues. Phytochemistry. 2001;58(4):587–90.

    Article  CAS  PubMed  Google Scholar 

  96. Milder IEJ, Arts ICW, Bvd Putte, Venema DP, Hollman PCH. Lignan contents of Dutch plant foods: a database including lariciresinol, pinoresinol, secoisolariciresinol and matairesinol. Br J Nutr. 2005;93(03):393–402.

    Article  CAS  PubMed  Google Scholar 

  97. Meagher LP, Beecher GR, Flanagan VP, Li BW. Isolation and characterization of the lignans, isolariciresinol and pinoresinol, in flaxseed meal. J Agric Food Chem. 1999;47(8):3173–80.

    Article  CAS  PubMed  Google Scholar 

  98. Nemes S, Orsat V. Evaluation of a microwave-assisted extraction method for lignan quantification in flaxseed cultivars and selected oil seeds. Food Anal Method. 2012;5(3):551–63.

    Article  Google Scholar 

  99. Kuijsten A, Arts ICW, Vree TB, Hollman PCH. Pharmacokinetics of enterolignans in healthy men and women consuming a single dose of secoisolariciresinol diglucoside. J Nutr. 2005;135(4):795–801.

    CAS  PubMed  Google Scholar 

  100. Clavel T, Henderson G, Engst W, Dore J, Blaut M. Phylogeny of human intestinal bacteria that activate the dietary lignan secoisolariciresinol diglucoside. FEMS Microbiol Ecol. 2006;55(3):471–8.

    Article  CAS  PubMed  Google Scholar 

  101. Clavel T, Henderson G, Alpert CA, Philippe C, Rigottier-Gois L, Dore J, et al. Intestinal bacterial communities that produce active estrogen-like compounds enterodiol and enterolactone in humans. Appl Environ Microbiol. 2005;71(10):6077–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Wang LQ, Meselhy MR, Li Y, Qin GW, Hattori M. Human intestinal bacteria capable of transforming secoisolariciresinol diglucoside to mammalian lignans, enterodiol and enterolactone. Chem Pharm Bull (Tokyo). 2000;48(11):1606–10.

    Article  CAS  Google Scholar 

  103. Rowland I, Faughnan M, Hoey L, Wahala K, Williamson G, Cassidy A. Bioavailability of phyto-oestrogens. Br J Nutr. 2003;89(Suppl 1):S45–58.

    CAS  PubMed  Google Scholar 

  104. Jansen GHE, Arts ICW, Nielen MWF, Müller M, Hollman PCH, Keijer J. Uptake and metabolism of enterolactone and enterodiol by human colon epithelial cells. Arch Biochem Biophys. 2005;435(1):74–82.

    Article  CAS  PubMed  Google Scholar 

  105. Raffaelli B, Hoikkala A, Leppala E, Wahala K. Enterolignans. J Chromatogr B Analyt Technol Biomed Life Sci. 2002;777(1–2):29–43.

    Article  CAS  PubMed  Google Scholar 

  106. Axelson M, Sjovall J, Gustafsson BE, Setchell KD. Origin of lignans in mammals and identification of a precursor from plants. Nature. 1982;298(5875):659–60.

    Article  CAS  PubMed  Google Scholar 

  107. Adlercreutz H, van der Wildt J, Kinzel J, Attalla H, Wahala K, Makela T, et al. Lignan and isoflavonoid conjugates in human urine. J Steroid Biochem Mol Biol. 1995;52(1):97–103.

    Article  CAS  PubMed  Google Scholar 

  108. Axelson M, Setchell KDR. Conjugation of lignans in human urine. FEBS Lett. 1980;122(1):49–53.

    Article  CAS  PubMed  Google Scholar 

  109. Saarinen NM, Thompson LU. Prolonged administration of secoisolariciresinol diglycoside increases lignan excretion and alters lignan tissue distribution in adult male and female rats. Br J Nutr. 2010;104(6):833–41.

    Article  CAS  PubMed  Google Scholar 

  110. Setchell KD, Brown NM, Zimmer-Nechemias L, Wolfe B, Jha P, Heubi JE. Metabolism of secoisolariciresinol-diglycoside the dietary precursor to the intestinally derived lignan enterolactone in humans. Food Funct. 2014;5(3):491–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Fukumitsu S, Aida K, Shimizu H, Toyoda K. Flaxseed lignan lowers blood cholesterol and decreases liver disease risk factors in moderately hypercholesterolemic men. Nutr Res. 2010;30(7):441–6.

    Article  CAS  PubMed  Google Scholar 

  112. Pilar BC, da Costa Güllich AA, Ströher DJ, Zuravski L, Mezzomo J, Coelho RP, et al. 28-days dietary supplementation with golden flaxseed improves biochemical and oxidative parameters in patients with metabolic syndrome. J Funct Food. 2014;10:232–42.

    Article  CAS  Google Scholar 

  113. Hu C, Yuan YV, Kitts DD. Antioxidant activities of the flaxseed lignan secoisolariciresinol diglucoside, its aglycone secoisolariciresinol and the mammalian lignans enterodiol and enterolactone in vitro. Food Chem Toxicol. 2007;45(11):2219–27.

    Article  CAS  PubMed  Google Scholar 

  114. Prasad K. Reduction of serum cholesterol and hypercholesterolemic atherosclerosis in rabbits by secoisolariciresinol diglucoside isolated from flaxseed. Circulation. 1999;99(10):1355–62.

    Article  CAS  PubMed  Google Scholar 

  115. Prasad K. Hypocholesterolemic and antiatherosclerotic effect of flax lignan complex isolated from flaxseed. Atherosclerosis. 2005;179(2):269–75.

    Article  CAS  PubMed  Google Scholar 

  116. Prasad K. Regression of hypercholesterolemic atherosclerosis in rabbits by secoisolariciresinol diglucoside isolated from flaxseed. Atherosclerosis. 2008;197(1):34–42.

    Article  CAS  PubMed  Google Scholar 

  117. Felmlee MA, Woo G, Simko E, Krol ES, Muir AD, Alcorn J. Effects of the flaxseed lignans secoisolariciresinol diglucoside and its aglycone on serum and hepatic lipids in hyperlipidaemic rats. Br J Nutr. 2009;102(3):361–9.

    Article  CAS  PubMed  Google Scholar 

  118. Zanwar AA, Hegde MV, Rojatkar SR, Bodhankar SL. Antihyperlipidemic activity of concomitant administration of methanolic fraction of flax lignan concentrate and omega-3-fatty acid in poloxamer-407 induced experimental hyperlipidemia. Ind Crop Prod. 2014;52:656–63.

    Article  CAS  Google Scholar 

  119. Penumathsa SV, Koneru S, Zhan L, John S, Menon VP, Prasad K, et al. Secoisolariciresinol diglucoside induces neovascularization-mediated cardioprotection against ischemia-reperfusion injury in hypercholesterolemic myocardium. J Mol Cell Cardiol. 2008;44(1):170–9.

    Article  CAS  PubMed  Google Scholar 

  120. Fukumitsu S, Aida K, Ueno N, Ozawa S, Takahashi Y, Kobori M. Flaxseed lignan attenuates high-fat diet-induced fat accumulation and induces adiponectin expression in mice. Br J Nutr. 2008;100(3):669–76.

    Article  CAS  PubMed  Google Scholar 

  121. Park JB, Velasquez MT. Potential effects of lignan-enriched flaxseed powder on bodyweight, visceral fat, lipid profile, and blood pressure in rats. Fitoterapia. 2012;83(5):941–6.

    Article  CAS  PubMed  Google Scholar 

  122. Zanwar AA, Hegde MV, Bodhankar SL. Cardioprotective activity of flax lignan concentrate extracted from seeds of Linum usitatissimum in isoprenalin induced myocardial necrosis in rats. Interdiscip Toxicol. 2011;4(2):90–7.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Kaewmanee T, Bagnasco L, Benjakul S, Lanteri S, Morelli CF, Speranza G, et al. Characterisation of mucilages extracted from seven Italian cultivars of flax. Food Chem. 2014;148:60–9.

    Article  CAS  PubMed  Google Scholar 

  124. Kristensen M, Savorani F, Christensen S, Engelsen SB, Bugel S, Toubro S, et al. Flaxseed dietary fibers suppress postprandial lipemia and appetite sensation in young men. Nutr Metab Cardiovasc Dis. 2013;23(2):136–43.

    Article  CAS  PubMed  Google Scholar 

  125. Singer FAW, Taha FS, Mohamed SS, Gibriel A, El-Nawawy M. Preparation of mucilage/protein products from flaxseed. Am J Food Technol. 2011;6:260–78.

    Article  CAS  Google Scholar 

  126. Chen X-Q, Liu Q, Jiang X-Y, Zeng F. Microwave-assisted extraction of polysaccharides from Solanum nigrum. J Cent South Univ T. 2005;12(5):556–60.

    Article  CAS  Google Scholar 

  127. Bagherian H, Zokaee Ashtiani F, Fouladitajar A, Mohtashamy M. Comparisons between conventional, microwave- and ultrasound-assisted methods for extraction of pectin from grapefruit. Chem Eng Process. 2011;50(11–12):1237–43.

    Article  CAS  Google Scholar 

  128. Liu D, Zhang L, Xu Y, Zhang X. The influence of ultrasound on the structure, rheological properties and degradation path of citrus pectin. Proc Meet Acoust. 2013;19:045092; http://dx.doi.org/10.1121/1.4800819.

  129. Fedeniuk RW, Biliaderis CG. Composition and physicochemical properties of linseed (Linum usitatissimum L.) mucilage. J Agric Food Chem. 1994;42(2):240–7.

    Article  CAS  Google Scholar 

  130. Ding HH, Cui SW, Goff HD, Wang Q, Chen J, Han NF. Soluble polysaccharides from flaxseed kernel as a new source of dietary fibres: extraction and physicochemical characterization. Food Res Int. 2014;56:166–73.

    Article  CAS  Google Scholar 

  131. Oomah BD, Kenaschuk EO, Cui W, Mazza G. Variation in the composition of water-soluble polysaccharides in flaxseed. J Agric Food Chem. 1995;43(6):1484–8.

    Article  CAS  Google Scholar 

  132. Kristensen M, Jensen MG, Aarestrup J, Petersen KE, Sondergaard L, Mikkelsen MS, et al. Flaxseed dietary fibers lower cholesterol and increase fecal fat excretion, but magnitude of effect depend on food type. Nutr Metab (Lond). 2012;9:8.

    Article  CAS  Google Scholar 

  133. Thakur G, Mitra A, Pal K, Rousseau D. Effect of flaxseed gum on reduction of blood glucose and cholesterol in type 2 diabetic patients. Int J Food Sci Nutr. 2009;60(Suppl 6):126–36.

    Article  CAS  PubMed  Google Scholar 

  134. Kristensen M, Knudsen KE, Jorgensen H, Oomah D, Bugel S, Toubro S, et al. Linseed dietary fibers reduce apparent digestibility of energy and fat and weight gain in growing rats. Nutrients. 2013;5(8):3287–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. NHMRC. Nutrient reference values for Australia and New Zealand including recommended dietary intakes: National Health and Medical Research Council, Department of Health and Ageing, Australian Government; 2006. Available from: https://www.nhmrc.gov.au/guidelines-publications/n35-n36-n37.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lindsay Brown .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Shafie, S.R., Poudyal, H., Panchal, S.K., Brown, L. (2016). Linseed as a Functional Food for the Management of Obesity. In: Hegde, M., Zanwar, A., Adekar, S. (eds) Omega-3 Fatty Acids. Springer, Cham. https://doi.org/10.1007/978-3-319-40458-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40458-5_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40456-1

  • Online ISBN: 978-3-319-40458-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics