Skip to main content

Modeling Ring-Vaccination Strategies to Control Ebola Virus Disease Epidemics

  • Chapter
  • First Online:
Book cover Mathematical and Statistical Modeling for Emerging and Re-emerging Infectious Diseases

Abstract

The 2013-15 Ebola epidemic that primarily affected Guinea, Sierra Leone and Liberia has become the most devastating Ebola epidemic in history [1]. This unprecedented epidemic appears to have stemmed from a single spillover event in South Guinea in December 2013 and rapidly spread to neighboring Sierra Leone and Guinea in a matter of weeks. Here we employ a network-based transmission model to evaluate the potential impact of reactive ring-vaccination strategies in the context of the Ebola epidemic in West Africa. We model ring-based vaccination strategies that incorporate the radius of contacts that are vaccinated for each infectious individual, the time elapsed from individual infectiousness to vaccinating susceptible and exposed contacts, and the number of available vaccine doses. Our baseline spatial transmission model in which the ring vaccination strategy is investigated has been previously shown to capture Ebola-like epidemics characterized by an initial phase of sub-exponential epidemic growth. Here we also extend this baseline model to account for heterogeneous community transmission rates that may be defined as a scalable function of the distance between an infectious individual and each member of that individual’s community. Overall, our findings indicate that reactive ring-vaccination strategies can effectively mitigate established Ebola epidemics. Importantly, we studied scenarios with varying number of weeks elapsed between the onset of symptoms and the day contacts are vaccinated and found that it is still beneficial to vaccinate contacts after the infectious period has elapsed. Our results indicate that while it is beneficial to vaccinate members of the community, the probability of extinction is not very sensitive to which contacts in the community are vaccinated unless transmission varies very steeply on the network distance between individuals. Both of these observations underscore the fact that vaccination can be effective by reducing transmission at the community level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

EVD:

Ebola virus disease

References

  1. Team WHOER: Ebola Virus Disease in West Africa - The First 9 Months of the Epidemic and Forward Projections. New Engl. J. Med. 371(16), 1481-1495, 22 Sep 2014

    Google Scholar 

  2. Chowell, G., Nishiura, H.: Transmission dynamics and control of Ebola virus disease (EVD): a review. BMC Med. 12(1), 196 (2014)

    Article  Google Scholar 

  3. Ebola response roadmap - Situation report - 23 Sep 2015. http://apps.who.int/ebola/current-situation/ebola-situation-report-23-september-2015. Accessed 27 Sep 2015

  4. Baize, S., Pannetier, D., Oestereich, L., Rieger, T., Koivogui, L., Magassouba, N., et al.: Emergence of Zaire Ebola virus disease in Guinea–preliminary report. New Engl. J. Med. 371(15), 1418–1425 (2014)

    Article  Google Scholar 

  5. Chowell, G., Nishiura, H.: Characterizing the transmission dynamics and control of Ebola virus disease. PLoS Biol. 13(1), e1002057 (2015)

    Article  Google Scholar 

  6. Nishiura, H., Chowell, G.: Early transmission dynamics of Ebola virus disease (EVD), West Africa, March to August 2014. Euro surveillance: bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin, vol. 19, no. 36 (2014)

    Google Scholar 

  7. Althaus, C.L.: Estimating the reproduction number of Zaire ebolavirus (EBOV) during the 2014 outbreak in West Africa. PLOS Curr. Outbreaks Ed. 1. doi:10.1371/currents.outbreaks.91afb5e0f279e7f29e7056095255b288 (2014)

  8. Fisman, D., Khoo, E., Tuite, A.: Early epidemic dynamics of the West African 2014 Ebola outbreak: estimates derived with a simple two-parameter model. PLoS Curr. 6 (2014)

    Google Scholar 

  9. Towers, S., Patterson-Lomba, O., Castillo-Chavez, C.: Temporal variations in the effective reproduction number of the 2014 West Africa Ebola outbreak. PLOS Curr. Outbreaks (2014)

    Google Scholar 

  10. Camacho, A., Kucharski, A., Aki-Sawyerr, Y., White, M.A., Flasche, S., Baguelin, M., et al.: Temporal changes in Ebola transmission in Sierra Leone and implications for control requirements: a real-time modelling study. PLoS Curr. 7 (2015)

    Google Scholar 

  11. Alizon, S., Lion, S., Murall, C.L., Abbate, J.L.: Quantifying the epidemic spread of Ebola virus (EBOV) in Sierra Leone using phylodynamics. Virulence 5(8), 825–827 (2014)

    Article  Google Scholar 

  12. Volz, E., Pond, S.: Phylodynamic analysis of Ebola virus in the 2014 Sierra Leone epidemic. PLoS Curr. 6 (2014)

    Google Scholar 

  13. Pandey, A., Atkins, K.E., Medlock, J., Wenzel, N., Townsend, J.P., Childs, J.E., et al.: Strategies for containing Ebola in West Africa. Science 346(6212), 991–995 (2014)

    Article  Google Scholar 

  14. Yamin, D., Gertler, S., Ndeffo-Mbah, M.L., Skrip, L.A., Fallah, M., Nyenswah, T.G., et al.: Effect of Ebola progression on transmission and control in Liberia. Ann. Intern. Med. 162, 11–17 (2014)

    Article  Google Scholar 

  15. Meltzer, M.I., Atkins, C.Y., Santibanez, S., Knust, B., Petersen, B.W., Ervin, E.D., et al.: Estimating the future number of cases in the Ebola epidemic - Liberia and Sierra Leone. Morb. Mortal. Wkly. Rep. Surveill. Summ. 26(63), 1–14 (2014)

    Google Scholar 

  16. Lewnard, J.A., Ndeffo Mbah, M.L., Alfaro-Murillo, J.A., Altice, F.L., Bawo, L., Nyenswah, T.G., et al.: Dynamics and control of Ebola virus transmission in Montserrado, Liberia: a mathematical modelling analysis. Lancet Infect. Dis. 14(12), 1189–1195 (2014)

    Article  Google Scholar 

  17. Merler, S., Ajelli, M., Fumanelli, L., Gomes, M.F., Piontti, A.P., Rossi, L., et al.: Spatiotemporal spread of the 2014 outbreak of Ebola virus disease in Liberia and the effectiveness of non-pharmaceutical interventions: a computational modelling analysis. Lancet Infect. Dis. 15(2), 204–211 (2015)

    Article  Google Scholar 

  18. Rivers, C.M., Lofgren, E.T., Marathe, M., Eubank, S., Lewis, B.L.: Modeling the impact of interventions on an epidemic of Ebola in Sierra Leone and Liberia. PLoS Curr 6 (2014)

    Google Scholar 

  19. Scarpino, S.V., Iamarino, A., Wells, C., Yamin, D., Ndeffo-Mbah, M., Wenzel, N.S., et al.: Epidemiological and viral genomic sequence analysis of the 2014 Ebola outbreak reveals clustered transmission. Clin. Infect. Dis. An official publication of the Infectious Diseases Society of America 60(7), 1079–1082 (2015)

    Google Scholar 

  20. Drake, J.M., Kaul, R.B., Alexander, L.W., O’Regan, S.M., Kramer, A.M., Pulliam, J.T., et al.: Ebola cases and health system demand in Liberia. PLoS Biol. 13(1), e1002056 (2015)

    Article  Google Scholar 

  21. Fasina, F., Shittu, A., Lazarus, D., Tomori, O., Simonsen, L., Viboud, C., et al.: Transmission dynamics and control of Ebola virus disease outbreak in Nigeria, July to September 2014. Euro surveillance: bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin, vol. 19, no. 40 (2014)

    Google Scholar 

  22. Webb, G., Browne, C., Huo, X., Seydi, O., Seydi, M., Magal, P.: A model of the: Ebola epidemic in West Africa with contact tracing. PLoS Curr. 7 (2014)

    Google Scholar 

  23. Browne, C., Gulbudak, H., Webb, G.: Modeling contact tracing in outbreaks with application to Ebola. J. Theor. Biol. 7(384), 33–49 (2015)

    Article  MathSciNet  Google Scholar 

  24. Gomes, M.F., Piontti, A.P., Rossi, L., Chao, D., Longini, I., Halloran, M.E., et al.: Assessing the international spreading risk associated with the 2014 West African Ebola outbreak. PLOS Curr. Outbreaks (2014)

    Google Scholar 

  25. Bogoch, I.I., Creatore, M.I., Cetron, M.S., Brownstein, J.S., Pesik, N., Miniota, J., et al.: Assessment of the potential for international dissemination of Ebola virus via commercial air travel during the 2014 West African outbreak. The Lancet (2014)

    Google Scholar 

  26. Bellan, S.E., Pulliam, J.R.C., Pearson, C.A.B., Champredon, D., Fox, S.J., Skrip, L., et al.: The statistical power and validity of Ebola vaccine trials in Sierra Leone: a simulation study of trial design and analysis. Lancet Infect. Dis. 15(6), 703–710 (2015)

    Article  Google Scholar 

  27. Cooper, B.S., Boni, M.F., Pan-ngum, W., Day, N.P., Horby, P.W., Olliaro, P., et al.: Evaluating clinical trial designs for investigational treatments of Ebola virus disease. PLoS Med. 12(4), e1001815 (2015)

    Article  Google Scholar 

  28. Henao-Restrepo, A.M., Longini, I.M., Egger, M., Dean, N.E., Edmunds, W.J., Camacho, A., et al.: Efficacy and effectiveness of an rVSV-vectored vaccine expressing Ebola surface glycoprotein: interim results from the Guinea ring vaccination cluster-randomised trial. Lancet 386(9996), 857–866 (2015)

    Article  Google Scholar 

  29. Greenhalgh, D.: Optimal control of an epidemic by ring vaccination. Commun. Stat. Stoch. Models 2(3), 339–363 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  30. Muller, J., Schonfisch, B., Kirkilionis, M.: Ring vaccination. J. Math. Biol. 41(2), 143–171 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  31. Kretzschmar, M., van den Hof, S., Wallinga, J., van Wijngaarden, J.: Ring vaccination and smallpox control. Emerg. Infect. Dis. 10(5), 832–841 (2004)

    Article  Google Scholar 

  32. Tildesley, M.J., Savill, N.J., Shaw, D.J., Deardon, R., Brooks, S.P., Woolhouse, M.E., et al.: Optimal reactive vaccination strategies for a foot-and-mouth outbreak in the UK. Nature 440(7080), 83–86 (2006)

    Article  Google Scholar 

  33. Ferguson, N.M., Donnelly, C.A., Anderson, R.M.: The foot-and-mouth epidemic in Great Britain: pattern of spread and impact of interventions. Science 292(5519), 1155–1160 (2001)

    Article  Google Scholar 

  34. Kiskowski, M.: Three-scale network model for the early growth dynamics of 2014 West Africa Ebola epidemic. PLOS Curr. Outbreaks (2014). doi:10.1371/currents.outbreaks.b4690859d91684da963dc40e00f3da81

  35. Kiskowski, M., Chowell, G.: Modeling household and community transmission of Ebola virus disease: epidemic growth, spatial dynamics and insights for epidemic control. Virulence 20, 1–11 (2015)

    Google Scholar 

  36. Chowell, G., Viboud, C., Hyman, J.M., Simonsen, L.: The Western Africa Ebola virus disease epidemic exhibits both global exponential and local polynomial growth rates. PLoS Curr. 7 (2015)

    Google Scholar 

  37. Wells, C., Yamin, D., Ndeffo-Mbah, M.L., Wenzel, N., Gaffney, S.G., Townsend, J.P., et al.: Harnessing case isolation and ring vaccination to control Ebola. PLoS Negl. Trop. Dis. 9(5), e0003794 (2015)

    Article  Google Scholar 

  38. Anderson, R.M., May, R.M.: Infectious Diseases of Humans. Oxford University Press, Oxford (1991)

    Google Scholar 

  39. Hethcote, H.W.: The mathematics of infectious diseases. SIAM Rev. 42(4), 599–653 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  40. Sattenspiel, L., Dietz, K.: A structured epidemic model incorporating geographic mobility among regions. Math. Biosci. 128(1–2), 71–91 (1995)

    Article  MATH  Google Scholar 

  41. Newman, M.E.: Spread of epidemic disease on networks. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 66(1 Pt 2), 016128 (2002)

    Google Scholar 

  42. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393(6684), 440–442 (1998)

    Article  Google Scholar 

  43. Xu, Z., Zu, Z., Zheng, T., Zhang, W., Xu, Q., Liu, J.: Comparative analysis of the effectiveness of three immunization strategies in controlling disease outbreaks in realistic social networks. PloS One 9(5), e95911 (2014)

    Article  Google Scholar 

  44. Pastor-Satorras, R., Vespignani, A.: Immunization of complex networks. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 65(3 Pt 2A), 036104 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gerardo Chowell or Maria Kiskowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Chowell, G., Kiskowski, M. (2016). Modeling Ring-Vaccination Strategies to Control Ebola Virus Disease Epidemics. In: Chowell, G., Hyman, J. (eds) Mathematical and Statistical Modeling for Emerging and Re-emerging Infectious Diseases. Springer, Cham. https://doi.org/10.1007/978-3-319-40413-4_6

Download citation

Publish with us

Policies and ethics