Advertisement

Educational Externalization of Thinking Task by Kit-Build Method

  • Tsukasa HirashimaEmail author
  • Yusuke Hayashi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9735)

Abstract

This paper describes kit-build approach to realize educational externalization of thinking task. In this approach, a learning target is to comprehend an information structure. In order to comprehend the structure, an interactive environment where a learner is allowed to operate the structure is designed and implemented. In the operation, the learner is provided several components and operates them. So, this approach is called kit-build approach. In this paper, the framework and several past related work are introduced. Then, ongoing work and future work following this approach are reported.

Keywords

Educational externalization Thinking task Kit-build Domain-specific information structure 

Notes

Acknowledgement

This work was supported by JSPS KAKENHI Grant Number 15H02931.

References

  1. 1.
    Polya, G.: How to Solve It, 2nd edn. Princeton University Press, Princeton (1957)Google Scholar
  2. 2.
    Mayer, R.E., Wittrock, M.C.: Problem solving. In: Winne, P.H. (ed.) Handbook of Educational Psychology, pp. 289–303. Psychology Press, Abingdon (2006)Google Scholar
  3. 3.
    Nathan, M.J., Kintsch, W., Young, E.: A theory of algebra-word-problem comprehension and its implications for the design of learning environments. Cogn. Instr. 9(4), 329–389 (1992)CrossRefGoogle Scholar
  4. 4.
    Mayer, R.: Mathematical problem solving. In: Royer, J. (ed.) Mathematical Cognition, pp. 69–92. Information Age Publishing, Greenwich (2003)Google Scholar
  5. 5.
    Brown, A.: Domain-specific principles affect learning and transfer in children. Cogn. Sci. 14, 107–133 (1990)Google Scholar
  6. 6.
    Hirashima, T., Yamasaki, K., Fukuda, H., Funaoi, H.: Framework of kit-build concept map for automatic diagnosis and its preliminary use. Res. Pract. Technol. Enhanc. Learn. 10(17), 1–18 (2015)Google Scholar
  7. 7.
    Gal’perin, P.Ia.: An experimental study in the formation of mental actions. In: Stones, E. (ed.) Readings in Educational Psychology, pp. 142–154 (1970)Google Scholar
  8. 8.
    Papert, S.: Mindstorms: Children, Computers, and Powerful Ideas. Basic Books, New York (1980)Google Scholar
  9. 9.
    Anderson, J.R., Boyle, C.F., Yost, G.: The geometry tutor. In: Proceedings of IJCAI, pp. 1–7 (1985)Google Scholar
  10. 10.
    Foss, C.L.: Learning from errors in Algebraland. IRL report no. IRL87-0003 (1987)Google Scholar
  11. 11.
    Carbonell, J.R.: AI in CAI: an artificial intelligence approach to computer-assisted instruction. IEEE Trans. Man-Mach. Syst. 11(4), 190–202 (1970)CrossRefGoogle Scholar
  12. 12.
    Quillian, M.R.: Semantic network. In: Minsky, M. (ed.) Semantic Information Processing, pp. 227–270. MIT Press, Cambridge (1968)Google Scholar
  13. 13.
    Clancey, W.J.: From GUIDON to NEOMYCIN and HERACLES in twenty short lessons: ORN final report 19794985. AI Mag. 7(3), 40–60 (1986)Google Scholar
  14. 14.
    Brown, J.S., Burton, R.R.: Diagnostic models for procedural bugs in basic mathematical skills. Cogn. Sci. 2, 155–191 (1978)CrossRefGoogle Scholar
  15. 15.
    Brown, J.S., VanLehn, K.: Repair theory: a generative theory of bugs in procedural skills. Cogn. Sci. 4, 379–426 (1980)CrossRefGoogle Scholar
  16. 16.
    VanLehn, K.: Human procedural skill acquisition: theory, model and psychological validation. In: Proceedings of the 1983 Conference of the American Association for Artificial Intelligence, pp. 420–423 (1983)Google Scholar
  17. 17.
    Hirashima, T., Yamamoto, S., Hayashi, Y.: Triplet structure model of arithmetical word problems for learning by problem-posing. In: Yamamoto, S. (ed.) HCI 2014, Part II. LNCS, vol. 8522, pp. 42–50. Springer, Heidelberg (2014)Google Scholar
  18. 18.
    Hirashima, T., Yokoyama, T., Okamoto, M., Takeuchi, A.: Learning by problem-posing as sentence-integration and experimental use. In: AIED 2007, pp. 254–261 (2007)Google Scholar
  19. 19.
    Hirashima, T., Kurayama, M.: Learning by problem-posing for reverse-thinking problems. In: Biswas, G., Bull, S., Kay, J., Mitrovic, A. (eds.) AIED 2011. LNCS, vol. 6738, pp. 123–130. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  20. 20.
    Yamamoto, S., Kanbe, T., Yoshida, Y., Maeda, K., Hirashima, T.: A case study of learning by problem-posing in introductory phase of arithmetic word problems. In: Proceedings of ICCE 2012, Main Conference E-Book, pp. 25–32 (2012)Google Scholar
  21. 21.
    Yamamoto, S., Hashimoto, T., Kanbe, T., Yoshida, Y., Maeda, K., Hirashima, T.: Interactive environment for learning by problem-posing of arithmetic word problems solved by one-step multiplication. In: Proceedings of ICCE 2013, pp. 51–60 (2013)Google Scholar
  22. 22.
    Yamamoto, S., Akao, Y., Murotsu, M., Kanbe, T., Yoshida, Y., Maeda, K., Hayashi, Y., Hirashima, T.: Interactive environment for learning by problem-posing of arithmetic word problems solved by one-step multiplication and division. In: ICCE 2014, pp. 89–94 (2014)Google Scholar
  23. 23.
    Ellerton, N.F.: Children’s made up mathematics problems: a new perspective on talented mathematicians. Educ. Stud. Math. 17, 261–271 (1986)CrossRefGoogle Scholar
  24. 24.
    Silver, E.A., Cai, J.: An analysis of arithmetic problem posing by middle school students. J. Res. Math. Educ. 27(5), 521–539 (1996)CrossRefGoogle Scholar
  25. 25.
    Nakano, A., Hirashima, T., Takeuchi, A.: Problem-making practice to master solution-methods in intelligent learning environment. In: Proceedings of ICCE 1999, pp. 891–898 (1999)Google Scholar
  26. 26.
    Hirashima, T., Nakano, A., Takeuchi, A.: A diagnosis function of arithmetical word problems for learning by problem posing. In: Mizoguchi, R., Slaney, J. (eds.) PRICAI 2000. LNCS, vol. 1886, pp. 745–755. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  27. 27.
    Riley, M.S., Greene, J.G., Heller, J.I.: Development of children’s problem solving ability in arithmetic. In: Ginsberg, H.P. (ed.) The Development of Mathematical Thinking. Academic Press, New York (1983)Google Scholar
  28. 28.
    Cummins, R.R., Kintsch, W., Reusser, K., Weimer, R.: The role of understanding in solving word problems. Cogn. Sci. 20, 405–438 (1988)Google Scholar
  29. 29.
    Hirashima, T., Hayashi, Y., Yamamoto, S., Maeda, K.: Bridging model between problem and solution representations in arithmetic/mathematics word problems. In: Proceedings of ICCE 2015, pp. 9–18 (2015)Google Scholar
  30. 30.
    Hirashima, T., Yamasaki, K., Fukuda, H., Funaoi, H.: Kit-build concept map for automatic diagnosis. In: Biswas, G., Bull, S., Kay, J., Mitrovic, A. (eds.) AIED 2011. LNCS, vol. 6738, pp. 466–468. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  31. 31.
    Yoshida, K., Sugihara, K., Nino, Y., Shida, M., Hirashima, T.: Practical use of kit-build concept map system for formative assessment of learners’ comprehension in a lecture. In: Proceedings of ICCE 2013, pp. 906–915 (2013)Google Scholar
  32. 32.
    Sugihara, K., Osada, T., Nakata, S., Funaoi, H., Hirashima, T.: Experimental evaluation of kit-build concept map for science classes in an elementary school. In: Proceedings of ICCE 2012, pp. 17–24 (2012)Google Scholar
  33. 33.
    Holyoak, K.J., Thagard, P.: Metal Leaps: Analogy in Creative Thought. MIT Press, Cambridge (1995)Google Scholar
  34. 34.
    Aubusson, P.J., Harrison, A.G., Ritchie, S.M. (eds.): Metaphor and Analogy in Science Education. Springer, The Netherlands (2006)Google Scholar
  35. 35.
    Gick, M., Holyoak, K.J.: Analogical problem solving. Cogn. Psychol. 12, 306–335 (1980)CrossRefGoogle Scholar
  36. 36.
    Gick, M., Holyoak, K.J.: Schema induction and analogical transfer. Cogn. Psychol. 15, 1–38 (1983)CrossRefGoogle Scholar
  37. 37.
    Richland, L.E., Holyoak, K.J., Stigler, J.W.: Analogy use in eight-grade mathematics classrooms. Cogn. Instr. 22(1), 37–60 (2004)CrossRefGoogle Scholar
  38. 38.
    Gentner, D.: Structure-mapping: a theoretical framework for analogy. Cogn. Sci. 7, 155–170 (1983)CrossRefGoogle Scholar
  39. 39.
    Falkenhainer, D., Forbus, K.D., Gentner, D.: The structure-mapping engine: algorithm and examples. Artif. Intell. 41, 1–63 (1989)CrossRefzbMATHGoogle Scholar
  40. 40.
    Harris, T., Hodges, R. (eds.): The Literacy Dictionary. International Reading Association, Newark (1995). p. 207Google Scholar
  41. 41.
    Novak, J.D., Gowin, D.B.: Learning How to Learn. Cambridge University Press, New York (1984)CrossRefGoogle Scholar
  42. 42.
    Alkhateeb, M., Hayashi, Y., Rajab, T., Hirashima, T.: Comparison between kit-build and scratch-build concept mapping methods in supporting EFL reading comprehension. J. Inf. Syst. Educ. 14(1), 13–27 (2015)Google Scholar
  43. 43.
    Alkhateeb, M., Hayashi, Y., Rajab, T., Hirashima, T.: The effects of KB‐mapping method to avoid sentence‐by‐sentence comprehension style in EFL reading. In: Proceedings of ICCE 2015, pp. 46–55 (2015)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Information EngineeringHiroshima UniversityHiroshimaJapan

Personalised recommendations