Educational Externalization of Thinking Task by Kit-Build Method

  • Tsukasa HirashimaEmail author
  • Yusuke Hayashi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9735)


This paper describes kit-build approach to realize educational externalization of thinking task. In this approach, a learning target is to comprehend an information structure. In order to comprehend the structure, an interactive environment where a learner is allowed to operate the structure is designed and implemented. In the operation, the learner is provided several components and operates them. So, this approach is called kit-build approach. In this paper, the framework and several past related work are introduced. Then, ongoing work and future work following this approach are reported.


Educational externalization Thinking task Kit-build Domain-specific information structure 



This work was supported by JSPS KAKENHI Grant Number 15H02931.


  1. 1.
    Polya, G.: How to Solve It, 2nd edn. Princeton University Press, Princeton (1957)Google Scholar
  2. 2.
    Mayer, R.E., Wittrock, M.C.: Problem solving. In: Winne, P.H. (ed.) Handbook of Educational Psychology, pp. 289–303. Psychology Press, Abingdon (2006)Google Scholar
  3. 3.
    Nathan, M.J., Kintsch, W., Young, E.: A theory of algebra-word-problem comprehension and its implications for the design of learning environments. Cogn. Instr. 9(4), 329–389 (1992)CrossRefGoogle Scholar
  4. 4.
    Mayer, R.: Mathematical problem solving. In: Royer, J. (ed.) Mathematical Cognition, pp. 69–92. Information Age Publishing, Greenwich (2003)Google Scholar
  5. 5.
    Brown, A.: Domain-specific principles affect learning and transfer in children. Cogn. Sci. 14, 107–133 (1990)Google Scholar
  6. 6.
    Hirashima, T., Yamasaki, K., Fukuda, H., Funaoi, H.: Framework of kit-build concept map for automatic diagnosis and its preliminary use. Res. Pract. Technol. Enhanc. Learn. 10(17), 1–18 (2015)Google Scholar
  7. 7.
    Gal’perin, P.Ia.: An experimental study in the formation of mental actions. In: Stones, E. (ed.) Readings in Educational Psychology, pp. 142–154 (1970)Google Scholar
  8. 8.
    Papert, S.: Mindstorms: Children, Computers, and Powerful Ideas. Basic Books, New York (1980)Google Scholar
  9. 9.
    Anderson, J.R., Boyle, C.F., Yost, G.: The geometry tutor. In: Proceedings of IJCAI, pp. 1–7 (1985)Google Scholar
  10. 10.
    Foss, C.L.: Learning from errors in Algebraland. IRL report no. IRL87-0003 (1987)Google Scholar
  11. 11.
    Carbonell, J.R.: AI in CAI: an artificial intelligence approach to computer-assisted instruction. IEEE Trans. Man-Mach. Syst. 11(4), 190–202 (1970)CrossRefGoogle Scholar
  12. 12.
    Quillian, M.R.: Semantic network. In: Minsky, M. (ed.) Semantic Information Processing, pp. 227–270. MIT Press, Cambridge (1968)Google Scholar
  13. 13.
    Clancey, W.J.: From GUIDON to NEOMYCIN and HERACLES in twenty short lessons: ORN final report 19794985. AI Mag. 7(3), 40–60 (1986)Google Scholar
  14. 14.
    Brown, J.S., Burton, R.R.: Diagnostic models for procedural bugs in basic mathematical skills. Cogn. Sci. 2, 155–191 (1978)CrossRefGoogle Scholar
  15. 15.
    Brown, J.S., VanLehn, K.: Repair theory: a generative theory of bugs in procedural skills. Cogn. Sci. 4, 379–426 (1980)CrossRefGoogle Scholar
  16. 16.
    VanLehn, K.: Human procedural skill acquisition: theory, model and psychological validation. In: Proceedings of the 1983 Conference of the American Association for Artificial Intelligence, pp. 420–423 (1983)Google Scholar
  17. 17.
    Hirashima, T., Yamamoto, S., Hayashi, Y.: Triplet structure model of arithmetical word problems for learning by problem-posing. In: Yamamoto, S. (ed.) HCI 2014, Part II. LNCS, vol. 8522, pp. 42–50. Springer, Heidelberg (2014)Google Scholar
  18. 18.
    Hirashima, T., Yokoyama, T., Okamoto, M., Takeuchi, A.: Learning by problem-posing as sentence-integration and experimental use. In: AIED 2007, pp. 254–261 (2007)Google Scholar
  19. 19.
    Hirashima, T., Kurayama, M.: Learning by problem-posing for reverse-thinking problems. In: Biswas, G., Bull, S., Kay, J., Mitrovic, A. (eds.) AIED 2011. LNCS, vol. 6738, pp. 123–130. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  20. 20.
    Yamamoto, S., Kanbe, T., Yoshida, Y., Maeda, K., Hirashima, T.: A case study of learning by problem-posing in introductory phase of arithmetic word problems. In: Proceedings of ICCE 2012, Main Conference E-Book, pp. 25–32 (2012)Google Scholar
  21. 21.
    Yamamoto, S., Hashimoto, T., Kanbe, T., Yoshida, Y., Maeda, K., Hirashima, T.: Interactive environment for learning by problem-posing of arithmetic word problems solved by one-step multiplication. In: Proceedings of ICCE 2013, pp. 51–60 (2013)Google Scholar
  22. 22.
    Yamamoto, S., Akao, Y., Murotsu, M., Kanbe, T., Yoshida, Y., Maeda, K., Hayashi, Y., Hirashima, T.: Interactive environment for learning by problem-posing of arithmetic word problems solved by one-step multiplication and division. In: ICCE 2014, pp. 89–94 (2014)Google Scholar
  23. 23.
    Ellerton, N.F.: Children’s made up mathematics problems: a new perspective on talented mathematicians. Educ. Stud. Math. 17, 261–271 (1986)CrossRefGoogle Scholar
  24. 24.
    Silver, E.A., Cai, J.: An analysis of arithmetic problem posing by middle school students. J. Res. Math. Educ. 27(5), 521–539 (1996)CrossRefGoogle Scholar
  25. 25.
    Nakano, A., Hirashima, T., Takeuchi, A.: Problem-making practice to master solution-methods in intelligent learning environment. In: Proceedings of ICCE 1999, pp. 891–898 (1999)Google Scholar
  26. 26.
    Hirashima, T., Nakano, A., Takeuchi, A.: A diagnosis function of arithmetical word problems for learning by problem posing. In: Mizoguchi, R., Slaney, J. (eds.) PRICAI 2000. LNCS, vol. 1886, pp. 745–755. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  27. 27.
    Riley, M.S., Greene, J.G., Heller, J.I.: Development of children’s problem solving ability in arithmetic. In: Ginsberg, H.P. (ed.) The Development of Mathematical Thinking. Academic Press, New York (1983)Google Scholar
  28. 28.
    Cummins, R.R., Kintsch, W., Reusser, K., Weimer, R.: The role of understanding in solving word problems. Cogn. Sci. 20, 405–438 (1988)Google Scholar
  29. 29.
    Hirashima, T., Hayashi, Y., Yamamoto, S., Maeda, K.: Bridging model between problem and solution representations in arithmetic/mathematics word problems. In: Proceedings of ICCE 2015, pp. 9–18 (2015)Google Scholar
  30. 30.
    Hirashima, T., Yamasaki, K., Fukuda, H., Funaoi, H.: Kit-build concept map for automatic diagnosis. In: Biswas, G., Bull, S., Kay, J., Mitrovic, A. (eds.) AIED 2011. LNCS, vol. 6738, pp. 466–468. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  31. 31.
    Yoshida, K., Sugihara, K., Nino, Y., Shida, M., Hirashima, T.: Practical use of kit-build concept map system for formative assessment of learners’ comprehension in a lecture. In: Proceedings of ICCE 2013, pp. 906–915 (2013)Google Scholar
  32. 32.
    Sugihara, K., Osada, T., Nakata, S., Funaoi, H., Hirashima, T.: Experimental evaluation of kit-build concept map for science classes in an elementary school. In: Proceedings of ICCE 2012, pp. 17–24 (2012)Google Scholar
  33. 33.
    Holyoak, K.J., Thagard, P.: Metal Leaps: Analogy in Creative Thought. MIT Press, Cambridge (1995)Google Scholar
  34. 34.
    Aubusson, P.J., Harrison, A.G., Ritchie, S.M. (eds.): Metaphor and Analogy in Science Education. Springer, The Netherlands (2006)Google Scholar
  35. 35.
    Gick, M., Holyoak, K.J.: Analogical problem solving. Cogn. Psychol. 12, 306–335 (1980)CrossRefGoogle Scholar
  36. 36.
    Gick, M., Holyoak, K.J.: Schema induction and analogical transfer. Cogn. Psychol. 15, 1–38 (1983)CrossRefGoogle Scholar
  37. 37.
    Richland, L.E., Holyoak, K.J., Stigler, J.W.: Analogy use in eight-grade mathematics classrooms. Cogn. Instr. 22(1), 37–60 (2004)CrossRefGoogle Scholar
  38. 38.
    Gentner, D.: Structure-mapping: a theoretical framework for analogy. Cogn. Sci. 7, 155–170 (1983)CrossRefGoogle Scholar
  39. 39.
    Falkenhainer, D., Forbus, K.D., Gentner, D.: The structure-mapping engine: algorithm and examples. Artif. Intell. 41, 1–63 (1989)CrossRefzbMATHGoogle Scholar
  40. 40.
    Harris, T., Hodges, R. (eds.): The Literacy Dictionary. International Reading Association, Newark (1995). p. 207Google Scholar
  41. 41.
    Novak, J.D., Gowin, D.B.: Learning How to Learn. Cambridge University Press, New York (1984)CrossRefGoogle Scholar
  42. 42.
    Alkhateeb, M., Hayashi, Y., Rajab, T., Hirashima, T.: Comparison between kit-build and scratch-build concept mapping methods in supporting EFL reading comprehension. J. Inf. Syst. Educ. 14(1), 13–27 (2015)Google Scholar
  43. 43.
    Alkhateeb, M., Hayashi, Y., Rajab, T., Hirashima, T.: The effects of KB‐mapping method to avoid sentence‐by‐sentence comprehension style in EFL reading. In: Proceedings of ICCE 2015, pp. 46–55 (2015)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Information EngineeringHiroshima UniversityHiroshimaJapan

Personalised recommendations