Skip to main content

Kinematic Analysis of the Human Thumb with Foldable Palm

  • Conference paper
  • First Online:
Book cover Towards Autonomous Robotic Systems (TAROS 2016)

Abstract

There have been numerous attempts to develop anthropomorphic robotic hands with varying levels of dexterous capabilities. However, these robotic hands often suffer from a lack of comprehensive understanding of the musculoskeletal behavior of the human thumb with integrated foldable palm. This paper proposes a novel kinematic model to analyze the importance of thumb-palm embodiment in grasping objects. The model is validated using human demonstrations for five precision grasp types across five human subjects. The model is used to find whether there are any co-activations among the thumb joint angles and muskuloskeletal parameters of the palm. In this paper we show that there are certain pairs of joints that show stronger linear relationships in the torque space than in joint angle space. These observations provide useful design guidelines to reduce control complexity in anthropomorphic robotic thumbs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Martell, J.S., Gini, G.: Robotic hands: design review and proposal of new design process. World Acad. Sci. Eng. Technol. 26, 85–90 (2007)

    Google Scholar 

  2. Santello, M., Flanders, M., Soechting, J.F.: Postural hand synergies for tool use. J. Neurosci. 18(23), 10105–10115 (1998)

    Google Scholar 

  3. Grinyagin, I.V., Biryukova, E.V., Maier, M.A.: Kinematic and dynamic synergies of human precision-grip movements. J. Neurophysiol. 94(4), 2284–2294 (2005)

    Article  Google Scholar 

  4. Valero-Cuevas, F.J., Johanson, M.E., Towles, J.D.: Towards a realistic biomechanical model of the thumb: the choice of kinematic description may be more critical than the solution method or the variability/uncertainty of musculoskeletal parameters. J. Biomech. 36(7), 1019–1030 (2003)

    Article  Google Scholar 

  5. Giurintano, D., Hollister, A., Buford, W., Thompson, D., Myers, L.: A virtual five-link model of the thumb. Med. Eng. Phys. 17(4), 297–303 (1995)

    Article  Google Scholar 

  6. Bullock, I.M., Borràs, J., Dollar, A.M.: Assessing assumptions in kinematic hand models: a review. In: 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), pp. 139–146 (2012)

    Google Scholar 

  7. Griffin, W.B., Findley, R.P., Turner, M.L., Cutkosky, M.R.: Calibration and mapping of a human hand for dexterous telemanipulation. In: ASME IMECE 2000 Symposium on Haptic Interfaces for Virtual Environments and Teleoperator Systems, pp. 1–8 (2000)

    Google Scholar 

  8. Hollister, A., Giurintano, D.J., Buford, W.L., Myers, L.M., Novick, A.: The axes of rotation of the thumb interphalangeal and metacarpophalangeal joints. Clin. Orthop. Relat. Res. 320, 188–193 (1995)

    Google Scholar 

  9. Hollister, A., Buford, W.L., Myers, L.M., Giurintano, D.J., Novick, A.: The axes of rotation of the thumb carpometacarpal joint. J. Orthop. Res. 10(3), 454–460 (1992)

    Article  Google Scholar 

  10. Chang, L.Y., Matsuoka, Y.: A kinematic thumb model for the act hand. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 1000–1005. IEEE (2006)

    Google Scholar 

  11. Chalon, M., Grebenstein, M., Wimböck, T., Hirzinger, G.: The thumb: guidelines for a robotic design. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5886–5893 (2010)

    Google Scholar 

  12. Chang, L.Y., Pollard, N.S.: Method for determining kinematic parameters of the in vivo thumb carpometacarpal joint. IEEE Trans. Biomed. Eng. 55(7), 1897–1906 (2008)

    Article  Google Scholar 

  13. Santos, V.J., Valero-Cuevas, F.J.: Reported anatomical variability naturally leads to multimodal distributions of Denavit-Hartenberg parameters for the human thumb. IEEE Trans. Biomed. Eng. 53(2), 155–163 (2006)

    Article  Google Scholar 

  14. Kaufman, K.R., An, K.N., Litchy, W.J., Cooney, W.P., Chao, E.Y.: In-vivo function of the thumb muscles. Clin. Biomech. 14(2), 141–150 (1999)

    Article  Google Scholar 

  15. Craig, J.J.: Introduction to Robotics: Mechanics and Control, vol. 3. Pearson Prentice Hall, Upper Saddle River (2005)

    Google Scholar 

  16. Smutz, W.P., Kongsayreepong, A., Hughes, R.E., Niebur, G., Cooney, W.P., An, K.N.: Mechanical advantage of the thumb muscles. J. Biomech. 31(6), 565–570 (1998)

    Article  Google Scholar 

  17. Neumann, D.A., Bielefeld, T.: The carpometacarpal joint of the thumb: stability, deformity, and therapeutic intervention. J. Orthop. Sports Phys. Ther. 33(7), 386–399 (2003)

    Article  Google Scholar 

  18. Ladd, A.L., Crisco, J.J., Hagert, E., Rose, J., Weiss, A.P.C.: The 2014 ABJS nicolas andry award: The puzzle of the thumb: mobility, stability, and demands in opposition. Clin. Orthop. Relat. Res. 472(12), 3605–3622 (2014)

    Article  Google Scholar 

  19. Feix, T., Romero, J., Ek, C.H., Schmiedmayer, H.B., Kragic, D.: A metric for comparing the anthropomorphic motion capability of artificial hands. IEEE Trans. Robot. 29(1), 82–93 (2013)

    Article  Google Scholar 

  20. Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms, vol. 16. John Wiley & Sons, Hoboken (2001)

    MATH  Google Scholar 

  21. Nanayakkara, T., Watanabe, K., Kiguchi, K., Izumi, K.: Evolving a multiobjective obstacle avoidance skill of a seven-link manipulator subject to constraints. Int. J. Syst. Sci. 35(3), 167–178 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  22. Nanayakkara, T., Kiguchi, K., Murakami, T., Watanabe, K., Izumi, K.: Skillful adaptation of a 7-dof manipulator to avoid moving obstacles in a teleoperated force control task. In: IEEE International Symposium on Industrial Electronics (ISIE), vol. 3, pp. 1982–1987 (2001)

    Google Scholar 

  23. Cooney, W.P., Lucca, M.J., Chao, E., Linscheid, R.: The kinesiology of the thumb trapeziometacarpal joint. J. Bone Joint Surg. 63(9), 1371–1381 (1981)

    Google Scholar 

  24. Tang, J., Zhang, X., Li, Z.M.: Operational and maximal workspace of the thumb. Ergonomics 51(7), 1109–1118 (2008)

    Article  Google Scholar 

  25. Li, Z.M., Tang, J.: Coordination of thumb joints during opposition. J. Biomech. 40(3), 502–510 (2007)

    Article  Google Scholar 

  26. Vigouroux, L., Domalain, M., Berton, E.: Comparison of tendon tensions estimated from two biomechanical models of the thumb. J. Biomech. 42(11), 1772–1777 (2009)

    Article  Google Scholar 

  27. Hollister, A., Giurintano, D.J.: Thumb movements, motions, and moments. J. Hand Ther. 8(2), 106–114 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Visakha Nanayakkara .

Editor information

Editors and Affiliations

A APPENDIX: The Transformation Matrices for the Kinematic Model

A APPENDIX: The Transformation Matrices for the Kinematic Model

$$\begin{aligned} ^{0} _{1} T = \left[ \begin{array}{cccc} cos(90 + \gamma _{1}) &{} 0 &{} sin(90 + \gamma _{1}) &{} 0 \\ 0 &{} 1 &{} 0 &{} 0 \\ -sin(90 + \gamma _{1}) &{} 0 &{} cos(90 + \gamma _{1}) &{} 0 \\ 0 &{} 0 &{} 0 &{} 1 \end{array} \right] ~~~ ^{1} _{2} T = \left[ \begin{array}{cccc} cos (\theta _1) &{} -sin(\theta _1) &{} 0 &{} l_{1} \\ sin(\theta _1) &{} cos(\theta _1) &{} 0 &{} 0 \\ 0 &{} 0 &{} 1 &{} l_2 \\ 0 &{} 0 &{} 0 &{} 1 \end{array} \right] \end{aligned}$$
$$\begin{aligned} ^{2} _{3} T = \left[ \begin{array}{cccc} cos (\theta _2) &{} -sin(\theta _2) &{} 0 &{} 0 \\ 0 &{} 0 &{} -1 &{} -l_3 \\ sin(\theta _2) &{} cos(\theta _2) &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} 1 \end{array} \right] ~~~ ^{3} _{4} T = \left[ \begin{array}{cccc} cos (\theta _3) &{} -sin(\theta _3) &{} 0 &{} 0 \\ 0 &{} 0 &{} 1 &{} 0 \\ -sin(\theta _3) &{} -cos(\theta _3) &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} 1 \end{array} \right] \end{aligned}$$
$$\begin{aligned} ^{4} _{5} T = \left[ \begin{array}{cccc} cos (\theta _4) &{} -sin(\theta _4) &{} 0 &{} 0 \\ 0 &{} 0 &{} -1 &{} 0 \\ sin(\theta _4) &{} cos(\theta _4) &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} 1 \end{array} \right] ~~~ ^{5} _{6} T = \left[ \begin{array}{cccc} cos (\theta _5) &{} -sin(\theta _5) &{} 0 &{} l_4 \\ 0 &{} 0 &{} -1 &{} 0 \\ sin(\theta _5) &{} cos (\theta _5) &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} 1 \end{array} \right] \end{aligned}$$
$$\begin{aligned} ^{6} _{7} T = \left[ \begin{array}{cccc} cos (\theta _6) &{} -sin(\theta _6) &{} 0 &{} 0 \\ 0 &{} 0 &{} 1 &{} 0 \\ -sin(\theta _6) &{} -cos (\theta _6) &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} 1 \end{array} \right] ~~~ ^{7} _{8} T = \left[ \begin{array}{cccc} cos (\theta _7) &{} -sin(\theta _7) &{} 0 &{} l_{5} \\ 0 &{} 0 &{} -1 &{} 0 \\ sin(\theta _7) &{} cos (\theta _7) &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} 1 \end{array} \right] ~~~ ^{8} _{9} T = \left[ \begin{array}{cccc} 1 &{} 0 &{} 0 &{} l_{6} \\ 0 &{} 1 &{} 0 &{} 0 \\ 0 &{} 0 &{} 1 &{} 0 \\ 0 &{} 0 &{} 0 &{} 1 \end{array} \right] \end{aligned}$$

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Nanayakkara, V. et al. (2016). Kinematic Analysis of the Human Thumb with Foldable Palm. In: Alboul, L., Damian, D., Aitken, J. (eds) Towards Autonomous Robotic Systems. TAROS 2016. Lecture Notes in Computer Science(), vol 9716. Springer, Cham. https://doi.org/10.1007/978-3-319-40379-3_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40379-3_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40378-6

  • Online ISBN: 978-3-319-40379-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics