Skip to main content

A Portable Active Binocular Robot Vision Architecture for Scene Exploration

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9716))

Abstract

We present a portable active binocular robot vision architecture that integrates a number of visual behaviours. This vision architecture inherits the abilities of vergence, localisation, recognition and simultaneous identification of multiple target object instances. To demonstrate the portability of our vision architecture, we carry out qualitative and comparative analysis under two different hardware robotic settings, feature extraction techniques and viewpoints. Our portable active binocular robot vision architecture achieved average recognition rates of 93.5 % for fronto-parallel viewpoints and, 83 % percentage for anthropomorphic viewpoints, respectively.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    http://code.google.com/p/msocket/ (verified on 4 March, 2016).

  2. 2.

    https://pypi.python.org/pypi/pymatlab (verified on 4 March, 2016).

  3. 3.

    All 7 scenes can be accessed at http://www.gerardoaragon.com/taros2016.html.

  4. 4.

    All 3 scenes can be accessed at http://www.gerardoaragon.com/taros2016.html.

References

  1. Alcantarilla, P.F., Bartoli, A., Davison, A.J.: KAZE features. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part VI. LNCS, vol. 7577, pp. 214–227. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  2. Aragon-Camarasa, G., Siebert, J.P.: A hierarchy of visual behaviours in an active binocular robot. In: Kyriacou, T., Nehmzow, U., Melhuish, C., Witkowski, M. (eds.) Towards Autonomous Robotic Systems, TAROS 2009, pp. 88–95 (2009)

    Google Scholar 

  3. Aragon-Camarasa, G., Fattah, H., Siebert, J.P.: Towards a unified visual framework in a binocular active robot vision system. Robot. Auton. Syst. 58(3), 276–286 (2010)

    Article  Google Scholar 

  4. Aragon-Camarasa, G., Siebert, J.P.: Unsupervised clustering in Hough space for recognition of multiple instances of the same object in a cluttered scene. Pattern Recogn. Lett. 31(11), 1274–1284 (2010)

    Article  Google Scholar 

  5. Arbib, M., Metta, G., der Smagt, P.: Neurorobotics: from vision to action. In: Siciliano, B., Khatib, O. (eds.) Springer Handbook of Robotics, pp. 1453–1480. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  6. Aydemir, A., Jensfelt, P.: Exploiting and modeling local 3d structure for predicting object locations. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3885–3892, October 2012

    Google Scholar 

  7. Ballard, D.H.: Animate vision. Artif. Intell. 48(1), 57–86 (1991)

    Article  Google Scholar 

  8. Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Comput. Vis. Image Underst. 110(3), 346–359 (2008). http://dx.doi.org/10.1016/j.cviu.2007.09.014

    Article  Google Scholar 

  9. Chen, S., Li, Y., Kwok, N.M.: Active vision in robotic systems: a survey of recent developments. Int. J. Robot. Res. 30(11), 1343–1377 (2011)

    Article  Google Scholar 

  10. Collet, A., Martinez, M., Srinivasa, S.S.: The moped framework: object recognition and pose estimation for manipulation. Int. J. Robot. Res. 30(10), 1284–1306 (2011)

    Article  Google Scholar 

  11. Dogar, M., Koval, M., Tallavajhula, A., Srinivasa, S.: Object search by manipulation. Auton. Rob. 36(1–2), 153–167 (2014)

    Article  Google Scholar 

  12. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)

    Article  Google Scholar 

  13. Ma, J., Chung, T.H., Burdick, J.: A probabilistic framework for object search with 6-DOF pose estimation. Int. J. Robot. Res. 30(10), 1209–1228 (2011)

    Article  Google Scholar 

  14. Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide baseline stereo from maximally stable extremal regions. In. British Machine Vision Conference, vol. 1, pp. 384–393 (2002)

    Google Scholar 

  15. Meger, D., Gupta, A., Little, J.J.: Viewpoint detection models for sequential embodied object category recognition. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 5055–5061 (2010)

    Google Scholar 

  16. Murphy, R., Mali, A.: Lessons learned in integrating sensing into autonomous mobile robot architectures. J. Exp. Theoret. Artif. Intell. 9(2), 191–209 (1997)

    Article  Google Scholar 

  17. Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R., Ng, A.Y.: Ros: an open-source robot operating system. In: ICRA Workshop on Open Source Software, vol. 3, p. 5 (2009)

    Google Scholar 

  18. Rasolzadeh, B., Bjorkman, M., Huebner, K., Kragic, D.: An active vision system for detecting, fixating and manipulating objects in the real world. Int. J. Robot. Res. 29(2–3), 133–154 (2010)

    Article  Google Scholar 

  19. Sun, L., Aragon-Camarasa, G., Rogers, S., Siebert, J.P.: Accurate garment surface analysis using an active stereo robot head with application to dual-arm flattening. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 185–192, May 2015

    Google Scholar 

  20. Sun, L., Aragon-Camarasa, G., Rogers, S., Siebert, J.: Accurate garment surface analysis using an active stereo robot head with application to dual-arm flattening. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 185–192, May 2015

    Google Scholar 

  21. Wolfe, B.A., Whitney, D.: Saccadic remapping of object-selective information. Attention, Percept. Psychophys. 77(7), 2260–2269 (2015)

    Article  Google Scholar 

  22. Wurtz, R.H., Joiner, W.M., Berman, R.A.: Neuronal mechanisms for visual stability: progress and problems. Philos. Trans. Royal Soc. London. Series B, Biolog. Sci. 366(1564), 492–503 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Programme Al\(\beta \)an, the European Union Programme (grant number E07D400872MX) and CONACYT-Mexico (grant number 207703).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerardo Aragon-Camarasa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Khan, A., Aragon-Camarasa, G., Siebert, J.P. (2016). A Portable Active Binocular Robot Vision Architecture for Scene Exploration. In: Alboul, L., Damian, D., Aitken, J. (eds) Towards Autonomous Robotic Systems. TAROS 2016. Lecture Notes in Computer Science(), vol 9716. Springer, Cham. https://doi.org/10.1007/978-3-319-40379-3_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40379-3_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40378-6

  • Online ISBN: 978-3-319-40379-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics