Skip to main content

Provably Secure Threshold Paillier Encryption Based on Hyperplane Geometry

  • Conference paper
  • First Online:
Information Security and Privacy (ACISP 2016)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 9723))

Included in the following conference series:

Abstract

In threshold encryption, the secret key is shared among a set of decryption parties, so that only a quorum of these parties can decrypt a given ciphertext. It is a useful building block in cryptology to distribute the trust of the secret key as well as increase availability. In particular, threshold Paillier encryption has been widely used in various security protocols, such as e-auction, e-voting and e-lottery. In this paper, we present the idea of designing provably secure threshold Paillier encryption using hyperplane geometry. Compared with the existing schemes that are based on polynomial interpolation, our work not only renovates the threshold Paillier cryptosystem using a different mathematical structure, but also enjoys some additional benefits: (1) our proposed method avoids the technical obstacle of computing inverses in the group whose order is unknown; (2) it gains computational advantages over Shoup’s trick and it can be used as a general building block to design secure and efficient threshold cryptosystems based on factoring.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baudron, O., Fouque, P.-A., Pointcheval, D., Stern, J., Poupard, G.: Practical multi-candidate election system. In: Proceedings of the 20th ACM Symposium on Principles of Distributed Computing (PODC 2001), pp. 274–283, New York, NY, USA (2001)

    Google Scholar 

  2. Blakley, R.: Safeguarding cryptographic keys. Proc. Nat. Comput. Conf. 48, 313–317 (1979)

    Google Scholar 

  3. Camenisch, J.L., Michels, M.: A group signature scheme with improved efficiency. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, pp. 160–174. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  4. Chaum, D., Pedersen, T.P.: Wallet databases with observers. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 89–105. Springer, Heidelberg (1993)

    Chapter  Google Scholar 

  5. Damgård, I., Jurik, M., Nielsen, J.B.: A generalisation of Paillier’s public-key system with application to electronic voting (2003)

    Google Scholar 

  6. Desmedt, Y.G., Frankel, Y.: Threshold cryptosystems. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 307–315. Springer, Heidelberg (1990)

    Google Scholar 

  7. Desmedt, Y.G., Frankel, Y.: Shared generation of authenticators and signatures. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 457–469. Springer, Heidelberg (1992)

    Google Scholar 

  8. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987)

    Chapter  Google Scholar 

  9. Fouque, P.-A., Poupard, G., Stern, J.: Sharing decryption in the context of voting or lotteries. In: Frankel, Y. (ed.) FC 2000. LNCS, vol. 1962, pp. 90–104. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  10. Frankel, Y., Gemmell, P., MacKenzie, P.D., Yung, M.: Optimal-resilience proactive public-key cryptosystems. In: Proceedings of the 38th IEEE symposium on the Foundations of Computer Science (FOCS 1997), pp. 384–393 (1997)

    Google Scholar 

  11. Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Robust and efficient sharing of RSA functions. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 157–172. Springer, Heidelberg (1996)

    Google Scholar 

  12. Hazay, C., Nissim, K.: Efficient set operations in the presence of malicious adversaries. J. Cryptology 25(3), 383–433 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kissner, L., Song, D.: Privacy-preserving set operations. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 241–257. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  14. Pieprzyk, J.P., Harper, G., Menezes, A., Vanstone, S.A., Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  15. Poupard, G., Stern, J.: Security analysis of a practical “on the fly” authentication and signature generation. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 422–436. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  16. Rabin, T.: A simplified approach to threshold and proactive RSA. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 89–104. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  17. Ryan, P.Y.A., Bismark, D., Heather, J., Schneider, S., Xia, Z.: Prêt à voter: a voter-verifiable voting system. IEEE Trans. Inf. Forensics Secur. 4(4), 662–673 (2009)

    Article  Google Scholar 

  18. De Santis, A., Desmedt, Y., Frankel, Y., Yung, M.: How to share a function securely. In: Proceedings of the 26th ACM Symposium on the Theory of Computing, pp. 522–533 (1994)

    Google Scholar 

  19. Shoup, V.: Practical threshold signatures. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 207–220. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

Download references

Acknowledgement

This work was partially supported by the National Natural Science Foundation of China (Grant No. 61501333, 61572379, 61370224), National Key Technology Support Program of China (Grant No. 2012BAH45B01), and Natural Science Foundation of Hubei Province of China (Grant No. 2015CFA069, 2015CFB257). We are also grateful to the anonymous reviewers for their valuable comments on the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debiao He .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Xia, Z., Yang, X., Xiao, M., He, D. (2016). Provably Secure Threshold Paillier Encryption Based on Hyperplane Geometry. In: Liu, J., Steinfeld, R. (eds) Information Security and Privacy. ACISP 2016. Lecture Notes in Computer Science(), vol 9723. Springer, Cham. https://doi.org/10.1007/978-3-319-40367-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40367-0_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40366-3

  • Online ISBN: 978-3-319-40367-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics