Cardiovascular Structure, Function, and Pathophysiology

  • J. Rick Turner
  • Dilip R. Karnad
  • Snehal Kothari
Chapter

Abstract

This chapter provides an overview of healthy cardiovascular structure and function, followed by an overview of cardiac pathophysiology and disease. In each case, attention falls first on the heart, since multiple subsequent chapters focus on proarrhythmia. Nonetheless, discussions of the cardiovascular system are also pertinent to topics addressed later in the book.

References

  1. American Heart Association web site. Available at: http://www.heart.org. Accessed 13 Feb 2016
  2. Andreadis EA, Angelopoulos ET, Agaliotis GD, Tsakanikas AP, Mousoulis GP (2011) Why use automated office blood pressure measurements in clinical practice? High Blood Press Cardiovasc Prev 18:89–91PubMedCrossRefGoogle Scholar
  3. Antzelevitch C, Francis J (2004) Congenital short QT syndrome. Indian Pacing Electrophysiol J 4:46–49PubMedPubMedCentralGoogle Scholar
  4. Boukens BJ, Gutbrod SR, Efimov IR (2015) Imaging of ventricular fibrillation and defibrillation: the virtual electrode hypothesis. Adv Exp Med Biol 859:343–365PubMedPubMedCentralCrossRefGoogle Scholar
  5. Brugada R, Hong K, Dumaine R et al (2004) Sudden death associated with short QT syndrome linked to Mutations in HERG. Circulation 109:30–35PubMedCrossRefGoogle Scholar
  6. Bunch TJ, Ackerman MJ (2007) Cardiac channelopathies. In: Murphy JG, Lloyd MA (eds) Mayo clinic cardiology: concise textbook, 3rd edn. Mayo Clinic Scientific Press, Rochester, pp 335–344Google Scholar
  7. Curran ME, Splawski I, Timothy KW et al (1995) A molecular basis for cardiac arrhythmia: HERG mutations cause long QT syndrome. Cell 80:795–803PubMedCrossRefGoogle Scholar
  8. Das P, Samarasekera U (2013) The story of GBD 2010: a “super-human” effort. Lancet 380:2067–2070CrossRefGoogle Scholar
  9. Dessertenne F (1966) La tachycardia ventriculaire a deux foyers opposees variable. Arch Mal Coeur Vaiss 59:263–272PubMedGoogle Scholar
  10. Fabiato A, Coumel P (1991) Torsades de pointes, a quarter of a century later: a tribute to Dr. F. Dessertenne. Cardiovasc Drugs Ther 5:167–169PubMedCrossRefGoogle Scholar
  11. Gaita F, Giustetto C, Bianchi F et al (2003) Short QT Syndrome: a familial cause of sudden death. Circulation 108:965–970PubMedCrossRefGoogle Scholar
  12. Gedela M, Khan M, Jonsson O (2015) Heart failure. S D Med 68:403–405, 407–409PubMedGoogle Scholar
  13. Gussak I, Brugada P, Brugada J et al (2000) Idiopathic short QT interval: a new clinical syndrome? Cardiology 94:99–102PubMedCrossRefGoogle Scholar
  14. Horton R (2013) GBD 2010: understanding disease, injury, and risk. Lancet 380:2053–2054CrossRefGoogle Scholar
  15. Jervell A, Lange-Nielsen F (1957) Congenital deaf-mutism, functional heart disease with prolongation of the QT interval and sudden death. Am Heart J 54:59–68PubMedCrossRefGoogle Scholar
  16. Kang J, Chen XL, Wang H et al (2005) Discovery of a small molecule activator of the human ether-a-go-go-related (hERG) cardiac K+ channel. Mol Pharmacol 67:827–836PubMedCrossRefGoogle Scholar
  17. Kirchhof P, Breithardt G, Bax J et al (2016) A roadmap to improve the quality of atrial fibrillation management: proceedings from the fifth Atrial Fibrillation Network/European Heart Rhythm Association consensus conference. Europace 18:37–50PubMedCrossRefGoogle Scholar
  18. Krakoff LR (2013) Ambulatory blood pressure improves prediction of cardiovascular risk: implications for better antihypertensive management. Curr Atheroscler Rep 15:317PubMedCrossRefGoogle Scholar
  19. Lim SS, Vos T, Flaxman AD et al (2013) A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380:2224–2260CrossRefGoogle Scholar
  20. Maggioni AP (2015) Epidemiology of heart failure in Europe. Heart Fail Clin 11:625–635PubMedCrossRefGoogle Scholar
  21. Malik M (2016) Drug-induced QT/QTc interval shortening: lessons from drug-induced QT/QTc prolongation. Drug Saf 39:647–659Google Scholar
  22. Myers MG (2010) Why automated office blood pressure should now replace the mercury sphygmomanometer. J Clin Hypertens (Greenwich) 12:478–480Google Scholar
  23. Myers MG (2014) Replacing manual sphygmomanometers with automated blood pressure measurement in routine clinical practice. Clin Exp Pharmacol Physiol 41:46–53PubMedCrossRefGoogle Scholar
  24. Myers MG, Godwin M (2012) Automated office blood pressure. Can J Cardiol 28:341–346PubMedCrossRefGoogle Scholar
  25. O’Brien E (2012) First Thomas Pickering Memorial Lecture: ambulatory blood pressure measurement is essential for the management of hypertension. J Clin Hypertens (Greenwich) 14:836–847CrossRefGoogle Scholar
  26. Nakano Y, Shimizu W (2016) Genetics of long-QT syndrome. J Hum Genet 61:51–55PubMedCrossRefGoogle Scholar
  27. O'Brien E, Parati G, Stergiou G et al (2013) European Society of Hypertension Working Group on Blood Pressure Monitoring. European Society of Hypertension position paper on ambulatory blood pressure monitoring. J Hypertens 9:1731–1768CrossRefGoogle Scholar
  28. Obrist PA (1981) Cardiovascular psychophysiology: a perspective. Plenum Press, New YorkCrossRefGoogle Scholar
  29. Pickering T, Shimbo D, Haas D (2006) Ambulatory blood-pressure monitoring. N Engl J Med 354:2368–2374PubMedCrossRefGoogle Scholar
  30. Sager PT, Gintant G, Turner JR, Pettit S, Stockbridge N (2014) Rechanneling the cardiac proarrhythmia safety paradigm: a meeting report from the Cardiac Safety Research Consortium. Am Heart J 167:292–300. Available in Open Access pdf format at: http://www.sciencedirect.com/science/article/pii/S0002870313007849. Accessed 2 Apr 2016
  31. Sato N (2015) Epidemiology of heart failure in Asia. Heart Fail Clin 11:573–579PubMedCrossRefGoogle Scholar
  32. Schwartz PJ (2005) The long QT syndrome: a clinical counterpart of hERT mutations. In: Chadwick DJ, Goode J (eds) Symposium on the hERG cardiac potassium channel: structure, function, and long QT syndrome. John Wiley & Sons, Chichester, pp 186–198CrossRefGoogle Scholar
  33. Shah RR (2007) Cardiac repolarisation and drug regulation: assessing cardiac safety 10 years after the CPMP guidance. Drug Saf 1093:1110Google Scholar
  34. Stergiou GS, Kollias A, Zeniodi M, Karpettas N, Ntineri A (2014) Home blood pressure monitoring: primary role in hypertension management. Curr Hypertens Rep 16:462PubMedCrossRefGoogle Scholar
  35. Turner JR (1994) Cardiovascular reactivity and stress: patterns of physiological response. Plenum Press, New YorkCrossRefGoogle Scholar
  36. Turner JR, Durham TA (2009) Integrated cardiac safety: assessment methodologies for noncardiac drugs in discovery, development, and postmarketing surveillance. John Wiley & Sons, HobokenGoogle Scholar
  37. Turner JR (2010) New drug development: an introduction to clinical trials, 2nd edn. Springer, New YorkCrossRefGoogle Scholar
  38. Turner JR, Viera AJ, Shimbo D (2015) Ambulatory blood pressure monitoring in clinical practice: a review. Am J Med 128:14–20PubMedCrossRefGoogle Scholar
  39. Wang Y, Pan X, Fan Y et al (2015) Dysregulated expression of microRNAs and mRNAs in myocardial infarction. Am J Transl Res 7:2291–2304PubMedPubMedCentralGoogle Scholar
  40. Wang Q, Shen J, Splawski I et al (1995) SCN5A mutations associated with an inherited cardiac arrhythmia, long QT syndrome. Cell 80:805–811PubMedCrossRefGoogle Scholar
  41. White H, Thygesen K, Alpert JS, Jaffe A (2014) Universal MI definition update for cardiovascular disease. Curr Cardiol Rep 16:492PubMedCrossRefGoogle Scholar
  42. Zhou J, Augelli-Szafran CE, Bradley JA et al (2005) Novel potent human ether-a-go-go-related (hERG) cardiac channel enhancers and their in vitro antiarrhythmic activity. Mol Pharmacol 68:876–884PubMedGoogle Scholar

Further Reading

  1. Abbott GW (2015) The KCNE2 K+ channel regulatory subunit: ubiquitous influence, complex pathobiology. Gene 569:162–172PubMedPubMedCentralCrossRefGoogle Scholar
  2. Abriel H, de Lange E, Kucera JP, Loussouarn G, Tarek M (2013) Computational tools to investigate genetic cardiac channelopathies. Front Physiol 4:390PubMedPubMedCentralCrossRefGoogle Scholar
  3. Abriel H, Rougier JS, Jalife J (2015) Ion channel macromolecular complexes in cardiomyocytes: roles in sudden cardiac death. Circ Res 116:1971–1988PubMedPubMedCentralCrossRefGoogle Scholar
  4. Ackerman MJ (2015) Genetic purgatory and the cardiac channelopathies: exposing the variants of uncertain/unknown significance issue. Heart Rhythm 12:2325–2331PubMedCrossRefGoogle Scholar
  5. Adsit GS, Vaidyanathan R, Galler CM, Kyle JW, Makielski JC (2013) Channelopathies from mutations in the cardiac sodium channel protein complex. J Mol Cell Cardiol 61:34–43PubMedPubMedCentralCrossRefGoogle Scholar
  6. Antzelevitch C, Nesterenko V, Shryock JC et al (2014) The role of late I Na in development of cardiac arrhythmias. Handb Exp Pharmacol 221:137–168PubMedPubMedCentralCrossRefGoogle Scholar
  7. Attali B, Gao ZB (2016) Ion channels research in the post-genomic era. Acta Pharmacol Sin 37:1–3PubMedPubMedCentralCrossRefGoogle Scholar
  8. Bando YK, Murohara T (2014) Diabetes-related heart failure. Circ J 78:576–583PubMedCrossRefGoogle Scholar
  9. Baroni D, Moran O (2015) On the multiple roles of the voltage gated sodium channel β1 subunit in genetic diseases. Front Pharmacol 6:108PubMedPubMedCentralCrossRefGoogle Scholar
  10. Barro-Soria R, Rebolledo S, Liin SI et al (2014) KCNE1 divides the voltage sensor movement in KCNQ1/KCNE1 channels into two steps. Nat Commun 5:3750PubMedPubMedCentralCrossRefGoogle Scholar
  11. Bartos DC, Grandi E, Ripplinger CM (2015) Ion channels in the heart. Compr Physiol 5:1423–1464PubMedPubMedCentralCrossRefGoogle Scholar
  12. Baumert M, Porta A, Vos MA et al (2016) QT interval variability in body surface ECG: measurement, physiological basis, and clinical value: position statement and consensus guidance endorsed by the European Heart Rhythm Association jointly with the ESC Working Group on Cardiac Cellular Electrophysiology. Europace 18:925–944Google Scholar
  13. Behere SP, Weindling SN (2015) Inherited arrhythmias: The cardiac channelopathies. Ann Pediatr Cardiol 8:210–220PubMedPubMedCentralCrossRefGoogle Scholar
  14. Buffery PJ, Strother RM (2015) Domperidone safety: a mini-review of the science of QT prolongation and clinical implications of recent global regulatory recommendations. N Z Med J 128:66–74PubMedGoogle Scholar
  15. Bulluck H, Yellon DM, Hausenloy DJ (2016) Reducing myocardial infarct size: challenges and future opportunities. Heart 102:341–348PubMedCrossRefGoogle Scholar
  16. Butler J, Gheorghiade M, Kelkar A et al (2015) In-hospital worsening heart failure. Eur J Heart Fail 17:1104–1113PubMedCrossRefGoogle Scholar
  17. Calvet D, Mas JL (2016) Recent advances in carotid angioplasty and stenting. Int J Stroke 11:19–27PubMedCrossRefGoogle Scholar
  18. Campuzano O, Sarquella-Brugada G, Brugada R, Brugada J (2015) Genetics of channelopathies associated with sudden cardiac death. Glob Cardiol Sci Pract 3:39CrossRefGoogle Scholar
  19. Chae YJ, Jeon JH, Lee HJ et al (2014) Escitalopram block of hERG potassium channels. Naunyn Schmiedebergs Arch Pharmacol 387:23–32PubMedCrossRefGoogle Scholar
  20. Chen J, Makiyama T, Wuriyanghai Y et al (2016) Cardiac sodium channel mutation associated with epinephrine-induced QT prolongation and sinus node dysfunction. Heart Rhythm 13:289–298PubMedCrossRefGoogle Scholar
  21. Choudhuri I, Pinninti M, Marwali MR, Sra J, Akhtar M (2013) Polymorphic ventricular tachycardia-part I: structural heart disease and acquired causes. Curr Probl Cardiol 38:463–496PubMedCrossRefGoogle Scholar
  22. Choudhuri I, Pinninti M, Marwali MR, Sra J, Akhtar M (2013) Polymorphic ventricular tachycardia--part II: the channelopathies. Curr Probl Cardiol 38:503–548PubMedCrossRefGoogle Scholar
  23. Cooper LB, DeVore AD, Michael Felker G (2015) The impact of worsening heart failure in the United States. Heart Fail Clin 11:603–614PubMedPubMedCentralCrossRefGoogle Scholar
  24. Corcoran D, Grant P, Berry C (2015) Risk stratification in non-ST elevation acute coronary syndromes: risk scores, biomarkers and clinical judgment. Int J Cardiol Heart Vasc 8:131–137PubMedPubMedCentralGoogle Scholar
  25. Cross MJ, Berridge BR, Clements PJ et al (2015) Physiological, pharmacological and toxicological considerations of drug-induced structural cardiac injury. Br J Pharmacol 172:957–974PubMedPubMedCentralCrossRefGoogle Scholar
  26. Cuneo BF (2015) The beginnings of long QT syndrome. Curr Opin Cardiol 30:112–127PubMedCrossRefGoogle Scholar
  27. Curran J, Mohler PJ (2015) Alternative paradigms for ion channelopathies: disorders of ion channel membrane trafficking and posttranslational modification. Annu Rev Physiol 77:505–524PubMedCrossRefGoogle Scholar
  28. Dai X, Wiernek S, Evans JP, Runge MS (2016) Genetics of coronary artery disease and myocardial infarction. World J Cardiol 8:1–23PubMedPubMedCentralCrossRefGoogle Scholar
  29. Dempsey CE, Wright D, Colenso CK, Sessions RB, Hancox JC (2014) Assessing hERG pore models as templates for drug docking using published experimental constraints: the inactivated state in the context of drug block. J Chem Inf Model 54:601–612PubMedPubMedCentralCrossRefGoogle Scholar
  30. Diness JG, Bentzen BH, Sørensen US, Grunnet M (2015) Role of calcium-activated potassium channels in atrial fibrillation pathophysiology and therapy. J Cardiovasc Pharmacol 66:441–448PubMedPubMedCentralCrossRefGoogle Scholar
  31. El-Sherif N, Boutjdir M (2015) Role of pharmacotherapy in cardiac ion channelopathies. Pharmacol Ther 155:132–142PubMedCrossRefGoogle Scholar
  32. Falkner B (2015) Recent clinical and translational advances in pediatric hypertension. Hypertension 65:926–931PubMedPubMedCentralCrossRefGoogle Scholar
  33. Fida N, Loebe M, Estep JD, Guha A (2015) Predictors and management of right heart failure after left ventricular assist device implantation. Methodist Debakey Cardiovasc J 11:18–23PubMedPubMedCentralCrossRefGoogle Scholar
  34. Foo B, Williamson B, Young JC, Lukacs G, Shrier A (2016) hERG quality control and the long QT syndrome. J Physiol 594:2469–2481Google Scholar
  35. Frommeyer G, Eckardt L (2016) Drug-induced proarrhythmia: risk factors and electrophysiological mechanisms. Nat Rev Cardiol 13:36–47PubMedCrossRefGoogle Scholar
  36. Gloschat CR, Koppel AC, Aras KK et al (2016) Arrhythmogenic and metabolic remodeling of failing human heart. J Physiol [Epub ahead of print]Google Scholar
  37. Glynn P, Musa H, Wu X et al (2015) Voltage-gated sodium channel phosphorylation at ser571 regulates late current, arrhythmia, and cardiac function in vivo. Circulation 132:567–577PubMedPubMedCentralCrossRefGoogle Scholar
  38. Goudis CA, Korantzopoulos P, Ntalas IV et al (2015) Diabetes mellitus and atrial fibrillation: pathophysiological mechanisms and potential upstream therapies. Int J Cardiol 184:617–622PubMedCrossRefGoogle Scholar
  39. Grassi G, Seravalle G, Mancia G (2015) Sympathetic activation in cardiovascular disease: evidence, clinical impact and therapeutic implications. Eur J Clin Invest 45:1367–1375PubMedCrossRefGoogle Scholar
  40. Han SN, Sun XY, Zhang Z, Zhang LR (2015) The protease inhibitor atazanavir blocks hERG K(+) channels expressed in HEK293 cells and obstructs hERG protein transport to cell membrane. Acta Pharmacol Sin 36:454–462PubMedPubMedCentralCrossRefGoogle Scholar
  41. Hancox JC, Melgari D, Dempsey CE et al (2015) hERG potassium channel inhibition by ivabradine may contribute to QT prolongation and risk of torsades de pointes. Ther Adv Drug Saf 6:177–179PubMedPubMedCentralCrossRefGoogle Scholar
  42. Havakuk O, Viskin S (2016) A tale of 2 diseases: the history of long-QT syndrome and Brugada syndrome. J Am Coll Cardiol 67:100–108PubMedCrossRefGoogle Scholar
  43. Howard PA (2015) Treating heart failure with preserved ejection fraction: a challenge for clinicians. Hosp Pharm 50:454–459PubMedPubMedCentralCrossRefGoogle Scholar
  44. Hsiao PY, Tien HC, Lo CP, Juang JM, Wang YH, Sung RJ (2013) Gene mutations in cardiac arrhythmias: a review of recent evidence in ion channelopathies. Appl Clin Genet 6:1–13PubMedPubMedCentralGoogle Scholar
  45. Hund TJ, Mohler PJ (2015) Role of CaMKII in cardiac arrhythmias. Trends Cardiovasc Med 25:392–397PubMedCrossRefGoogle Scholar
  46. Illikova V, Hlivak P, Hatala R (2015) Cardiac channelopathies in pediatric patients: 7-years single center experience. J Electrocardiol 48:150–156PubMedCrossRefGoogle Scholar
  47. Itoh H, Crotti L, Aiba T et al (2016) The genetics underlying acquired long QT syndrome: impact for genetic screening. Eur Heart J 37:1456–1464Google Scholar
  48. Johannesen L, Vicente J, Mason JW et al (2016) Late sodium current block for drug-induced long QT syndrome: results from a prospective clinical trial. Clin Pharmacol Ther 99:214–223PubMedCrossRefGoogle Scholar
  49. Kang IS, Fumiaki I, Pyun WB (2016) Therapeutic hypothermia for cardioprotection in acute myocardial infarction. Yonsei Med J 57:291–297PubMedPubMedCentralCrossRefGoogle Scholar
  50. Kappetein AP, van Mieghem NM, Head SJ (2016) Revascularization options: coronary artery bypass surgery and percutaneous coronary intervention. Heart Fail Clin 12:135–139PubMedCrossRefGoogle Scholar
  51. Kato K, Makiyama T, Wu J et al (2014) Cardiac channelopathies associated with infantile fatal ventricular arrhythmias: from the cradle to the bench. J Cardiovasc Electrophysiol 25:66–73PubMedCrossRefGoogle Scholar
  52. Kauthale RR, Dadarkar SS, Husain R, Karande VV, Gatne MM (2015) Assessment of temperature-induced hERG channel blockade variation by drugs. J Appl Toxicol 35:799–805PubMedCrossRefGoogle Scholar
  53. Kirk JA, Cingolani OH (2016) Thrombospondins in the transition from myocardial infarction to heart failure. J Mol Cell Cardiol 90:102–110PubMedCrossRefGoogle Scholar
  54. Koektuerk B, Aksoy M, Horlitz M, Bozdag-Turan I, Turan RG (2016) Role of diabetes in heart rhythm disorders. World J Diabetes 7:45–49PubMedPubMedCentralCrossRefGoogle Scholar
  55. Kovács SJ (2015) Diastolic function in heart failure. Clin Med Insights Cardiol 9(Suppl 1):49–55PubMedPubMedCentralGoogle Scholar
  56. Lebeau JP, Cadwallader JS, Aubin-Auger I et al (2014) The concept and definition of therapeutic inertia in hypertension in primary care: a qualitative systematic review. BMC Fam Pract 15:130PubMedPubMedCentralCrossRefGoogle Scholar
  57. Lee CS (2015) Mechanisms of cardiotoxicity and the development of heart failure. Crit Care Nurs Clin North Am 27:469–481PubMedCrossRefGoogle Scholar
  58. Lee W, Mann SA, Windley MJ et al (2016) In silico assessment of kinetics and state dependent binding properties of drugs causing acquired LQTS. Prog Biophys Mol Biol 120:89–99Google Scholar
  59. Li G, Shi R, Wu J et al (2016) Association of the hERG mutation with long-QT syndrome type 2, syncope and epilepsy. Mol Med Rep 13:2467–2475Google Scholar
  60. Li M, Izpisua Belmonte JC (2016) Mending a faltering heart. Circ Res 118:344–351PubMedCrossRefGoogle Scholar
  61. Lieve KV, Wilde AA (2015) Inherited ion channel diseases: a brief review. Europace 17(Suppl 2):ii1–ii6PubMedCrossRefGoogle Scholar
  62. Loussouarn G, Sternberg D, Nicole S et al (2016) Physiological and pathophysiological insights of Nav1.4 and Nav1.5 comparison. Front Pharmacol 6:314PubMedPubMedCentralCrossRefGoogle Scholar
  63. Lu ML, De Venecia T, Patnaik S, Figueredo VM (2016) Atrial myocardial infarction: a tale of the forgotten chamber. Int J Cardiol 202:904–909PubMedCrossRefGoogle Scholar
  64. Makielski JC (2016) Late sodium current: a mechanism for angina, heart failure, and arrhythmia. Trends Cardiovasc Med 26:115–122PubMedCrossRefGoogle Scholar
  65. Makielski JC, Kyle JW (2015) Late I(Na) in the heart: physiology, pathology, and pathways. Circulation 132:553–555PubMedPubMedCentralCrossRefGoogle Scholar
  66. Mapanga RF, Essop MF (2016) Damaging effects of hyperglycemia on cardiovascular function: spotlight on glucose metabolic pathways. Am J Physiol Heart Circ Physiol 310:H153–H173PubMedCrossRefGoogle Scholar
  67. Marostica E, Van Ammel K, Teisman A et al (2015) Modelling of drug-induced QT-interval prolongation: estimation approaches and translational opportunities. J Pharmacokinet Pharmacodyn 42:659–679PubMedCrossRefGoogle Scholar
  68. Martin CA, Huang CL, Matthews GD (2013) The role of ion channelopathies in sudden cardiac death: implications for clinical practice. Ann Med 45:364–374PubMedCrossRefGoogle Scholar
  69. Meijer van Putten RM, Mengarelli I, Guan K et al (2015) Ion channelopathies in human induced pluripotent stem cell derived cardiomyocytes: a dynamic clamp study with virtual IK1. Front Physiol 6:7PubMedPubMedCentralCrossRefGoogle Scholar
  70. Melgari D, Brack KE, Zhang C et al (2015) hERG potassium channel blockade by the HCN channel inhibitor bradycardic agent ivabradine. J Am Heart Assoc 4:pii: e001813Google Scholar
  71. Melgari D, Zhang Y, El Harchi A, Dempsey CE, Hancox JC (2015) Molecular basis of hERG potassium channel blockade by the class Ic antiarrhythmic flecainide. J Mol Cell Cardiol 86:42–53PubMedPubMedCentralCrossRefGoogle Scholar
  72. McKavanagh P, McCune C, Menown IB (2015) A review of the key clinical trials of 2014. Cardiol Ther 4:5–23PubMedPubMedCentralCrossRefGoogle Scholar
  73. McNeice AH, McAleavey NM, Menown IB (2014) Advances in clinical cardiology. Adv Ther 31:837–860PubMedCrossRefGoogle Scholar
  74. Milanesi R, Bucchi A, Baruscotti M (2015) The genetic basis for inherited forms of sinoatrial dysfunction and atrioventricular node dysfunction. J Interv Card Electrophysiol 43:121–134PubMedPubMedCentralCrossRefGoogle Scholar
  75. Mochizuki Y, Tanaka H, Matsumoto K et al (2015) Clinical features of subclinical left ventricular systolic dysfunction in patients with diabetes mellitus. Cardiovasc Diabetol 14:37PubMedPubMedCentralCrossRefGoogle Scholar
  76. Moreau A, Gosselin-Badaroudine P, Boutjdir M, Chahine M (2015) Mutations in the voltage sensors of domains I and II of Nav1.5 that are associated with arrhythmias and dilated cardiomyopathy generate gating pore currents. Front Pharmacol 6:301PubMedPubMedCentralCrossRefGoogle Scholar
  77. Moreau A, Gosselin-Badaroudine P, Chahine M (2015) Gating pore currents, a new pathological mechanism underlying cardiac arrhythmias associated with dilated cardiomyopathy. Channels (Austin) 9:139–144CrossRefGoogle Scholar
  78. Moreau A, Gosselin-Badaroudine P, Boutjdir M, Chahine M (2015) Mutations in the voltage sensors of domains I and II of Nav1.5 that are associated with arrhythmias and dilated cardiomyopathy generate gating pore currents. Front Pharmacol 6:301PubMedPubMedCentralCrossRefGoogle Scholar
  79. Moreau A, Gosselin-Badaroudine P, Delemotte L, Klein ML, Chahine M (2015) Gating pore currents are defects in common with two Nav1.5 mutations in patients with mixed arrhythmias and dilated cardiomyopathy. J Gen Physiol 145:93–106PubMedPubMedCentralCrossRefGoogle Scholar
  80. Nakano Y, Shimizu W (2016) Genetics of long-QT syndrome. J Hum Genet 61:51–55PubMedCrossRefGoogle Scholar
  81. Nieminen MS, Dickstein K, Fonseca C et al (2015) The patient perspective: quality of life in advanced heart failure with frequent hospitalisations. Int J Cardiol 191:256–264PubMedCrossRefGoogle Scholar
  82. Odening KE, Koren G (2014) How do sex hormones modify arrhythmogenesis in long QT syndrome? Sex hormone effects on arrhythmogenic substrate and triggered activity. Heart Rhythm 11:2107–2115PubMedPubMedCentralCrossRefGoogle Scholar
  83. Oliveira GB, Avezum A, Roever L (2015) Cardiovascular disease burden: evolving knowledge of risk factors in myocardial infarction and stroke through population-based research and perspectives in global prevention. Front Cardiovasc Med 2:32PubMedPubMedCentralCrossRefGoogle Scholar
  84. Orso F, Fabbri G, Baldasseroni S, Maggioni AP (2014) Newest additions to heart failure treatment. Expert Opin Pharmacother 15:1849–1861PubMedCrossRefGoogle Scholar
  85. Ozaki K, Tanaka T (2016) Molecular genetics of coronary artery disease. J Hum Genet 61:71–77PubMedCrossRefGoogle Scholar
  86. Ozawa J, Ohno S, Hisamatsu T et al (2016) Pediatric cohort with long QT syndrome: KCNH2 mutation carriers present late onset but severe symptoms. Circ J 80:696–702Google Scholar
  87. Paci M, Hyttinen J, Rodriguez B, Severi S (2015) Human induced pluripotent stem cell-derived versus adult cardiomyocytes: an in silico electrophysiological study on effects of ionic current block. Br J Pharmacol 172:5147–5160PubMedPubMedCentralCrossRefGoogle Scholar
  88. Palmerini T, Stone GW (2016) Optimal duration of dual antiplatelet therapy after drug-eluting stent implantation: conceptual evolution based on emerging evidence. Eur Heart J 37:353–364PubMedCrossRefGoogle Scholar
  89. Parker WA, Storey RF (2016) Long-term antiplatelet therapy following myocardial infarction: implications of PEGASUS-TIMI 54. Heart 102:783–789PubMedCrossRefGoogle Scholar
  90. Peacock J, Diaz KM, Viera AJ, Schwartz JE, Shimbo D (2014) Unmasking masked hypertension: prevalence, clinical implications, diagnosis, correlates and future directions. J Hum Hypertens 28:521–528PubMedPubMedCentralCrossRefGoogle Scholar
  91. Pillarisetti S (2016) Potential drug combinations to reduce cardiovascular disease burden in diabetes. Trends Pharmacol Sci 37:207–219Google Scholar
  92. Rabkin SW (2015) Impact of age and sex on QT prolongation in patients receiving psychotropics. Can J Psychiatry 60:206–214PubMedPubMedCentralCrossRefGoogle Scholar
  93. Ramirez A, Hu PP (2015) Low high-density lipoprotein and risk of myocardial infarction. Clin Med Insights Cardiol 9:113–117PubMedPubMedCentralCrossRefGoogle Scholar
  94. Rentrop KP, Feit F (2015) Reperfusion therapy for acute myocardial infarction: concepts and controversies from inception to acceptance. Am Heart J 170:971–980PubMedCrossRefGoogle Scholar
  95. Romero L, Trenor B, Yang PC, Saiz J, Clancy CE (2015) In silico screening of the impact of hERG channel kinetic abnormalities on channel block and susceptibility to acquired long QT syndrome. J Mol Cell Cardiol 87:271–282PubMedPubMedCentralCrossRefGoogle Scholar
  96. Rosendorff C; Writing Committee (2016) Treatment of hypertension in patients with coronary artery disease. A case-based summary of the 2015 AHA/ACC/ASH Scientific Statement. Am J Med 129:372–378Google Scholar
  97. Roszkowska-Blaim M, Skrzypczyk P (2015) Hypertension in children with end-stage renal disease. Adv Med Sci 60:342–348PubMedCrossRefGoogle Scholar
  98. Rougier JS, Abriel H (2016) Cardiac voltage-gated calcium channel macromolecular complexes. Biochim Biophys Acta 1863:1806–1812Google Scholar
  99. Rudic B, Schimpf R, Borggrefe M (2014) Short QT syndrome: review of diagnosis and treatment. Arrhythm Electrophysiol Rev 3:76–79PubMedPubMedCentralCrossRefGoogle Scholar
  100. Saffitz JE, Corradi D (2016) The electrical heart: 25 years of discovery in cardiac electrophysiology, arrhythmias and sudden death. Cardiovasc Pathol 25:149–157PubMedCrossRefGoogle Scholar
  101. Salama G, Bett GC (2014) Sex differences in the mechanisms underlying long QT syndrome. Am J Physiol Heart Circ Physiol 307:H640–H648PubMedPubMedCentralCrossRefGoogle Scholar
  102. Sathyamurthy I, Dalal JJ, Sawhney JP et al (2015) Cardiac biomarkers for better management of acute coronary syndromes. J Assoc Physicians India 63:46–50PubMedGoogle Scholar
  103. Schuett KA, Lehrke M, Marx N, Burgmaier M (2015) High-risk cardiovascular patients: clinical features, comorbidities, and interconnecting mechanisms. Front Immunol 6:591PubMedPubMedCentralCrossRefGoogle Scholar
  104. Schwandt P, Scholze JE, Bertsch T, Liepold E, Haas GM (2015) Blood pressure percentiles in 22,051 German children and adolescents: the PEP Family Heart Study. Am J Hypertens 28:672–679PubMedCrossRefGoogle Scholar
  105. Sharma K, Kass DA (2014) Heart failure with preserved ejection fraction: mechanisms, clinical features, and therapies. Circ Res 115:79–96PubMedPubMedCentralCrossRefGoogle Scholar
  106. Shenasa M, Shenasa H, El-Sherif N (2015) Left ventricular hypertrophy and arrhythmogenesis. Card Electrophysiol Clin 7:207–220PubMedCrossRefGoogle Scholar
  107. Shryock JC, Song Y, Rajamani S, Antzelevitch C, Belardinelli L (2013) The arrhythmogenic consequences of increasing late INa in the cardiomyocyte. Cardiovasc Res 99:600–611PubMedPubMedCentralCrossRefGoogle Scholar
  108. Spears DA, Gollob MH (2015) Genetics of inherited primary arrhythmia disorders. Appl Clin Genet 8:215–233PubMedPubMedCentralGoogle Scholar
  109. Spoonamore KG, Ware SM (2016) Genetic testing and genetic counseling in patients with sudden death risk due to heritable arrhythmias. Heart Rhythm 13:789–797PubMedCrossRefGoogle Scholar
  110. Swan H, Amarouch MY, Leinonen J et al (2014) Gain-of-function mutation of the SCN5A gene causes exercise-induced polymorphic ventricular arrhythmias. Circ Cardiovasc Genet 7:771–781PubMedCrossRefGoogle Scholar
  111. Tadros R, Cadrin-Tourigny J, Abadir S et al (2015) Pharmacotherapy for inherited arrhythmia syndromes: mechanistic basis, clinical trial evidence and practical application. Expert Rev Cardiovasc Ther 13:769–782PubMedCrossRefGoogle Scholar
  112. Tomaselli GF (2015) Introduction to a compendium on sudden cardiac death: epidemiology, mechanisms, and management. Circ Res 116:1883–1886PubMedPubMedCentralCrossRefGoogle Scholar
  113. Udell JA, Bonaca MP, Collet JP et al (2016) Long-term dual antiplatelet therapy for secondary prevention of cardiovascular events in the subgroup of patients with previous myocardial infarction: a collaborative meta-analysis of randomized trials. Eur Heart J 37:390–399PubMedGoogle Scholar
  114. Unudurthi SD, Hund TJ (2016) Late sodium current dysregulation as a causal factor in arrhythmia. Expert Rev Cardiovasc Ther 14:545–547Google Scholar
  115. Veerman CC, Wilde AA, Lodder EM (2015) The cardiac sodium channel gene SCN5A and its gene product NaV1.5: role in physiology and pathophysiology. Gene 573:177–187PubMedCrossRefGoogle Scholar
  116. Voelter-Mahlknecht S (2016) Epigenetic associations in relation to cardiovascular prevention and therapeutics. Clin Epigenet 8:4CrossRefGoogle Scholar
  117. Wang HG, Zhu W, Kanter RJ et al (2016) A novel NaV1.5 voltage sensor mutation associated with severe atrial and ventricular arrhythmias. Mol Cell Cardiol 92:52–62CrossRefGoogle Scholar
  118. Wiley KA, Demo EM, Walker P, Osborne Shuler C (2016) Exploring the discussion of risk of sudden cardiac death. Pediatr Cardiol 37:262–270PubMedCrossRefGoogle Scholar
  119. Willis BC, Ponce-Balbuena D, Jalife J (2015) Protein assemblies of sodium and inward rectifier potassium channels control cardiac excitability and arrhythmogenesis. Am J Physiol Heart Circ Physiol 308:H1463–H1473PubMedPubMedCentralCrossRefGoogle Scholar
  120. Xi B, Zong X, Kelishadi R et al (2016) International Child Blood Pressure References Establishment Consortium. Establishing international blood pressure references among nonoverweight children and adolescents aged 6 to 17 Years. Circulation 133:398–408PubMedCrossRefGoogle Scholar
  121. Yang KC, Kyle JW, Makielski JC, Dudley SC Jr (2015) Mechanisms of sudden cardiac death: oxidants and metabolism. Circ Res 116:1937–1955PubMedPubMedCentralCrossRefGoogle Scholar
  122. Yousuf O, Chrispin J, Tomaselli GF, Berger RD (2015) Clinical management and prevention of sudden cardiac death. Circ Res 116:2020–2040PubMedCrossRefGoogle Scholar
  123. Yu HB, Li M, Wang WP, Wang XL (2016) High throughput screening technologies for ion channels. Acta Pharmacol Sin 37:34–43PubMedCrossRefGoogle Scholar
  124. Zaklyazminskaya E, Dzemeshkevich S (2016) The role of mutations in the SCN5A gene in cardiomyopathies. Biochim Biophys Acta 1863:1799–1805Google Scholar
  125. Zemzemi N, Rodriguez B (2015) Effects of L-type calcium channel and human ether-a-go-go related gene blockers on the electrical activity of the human heart: a simulation study. Europace 17:326–333PubMedCrossRefGoogle Scholar
  126. Zhang XD, Lieu DK, Chiamvimonvat N (2015) Small-conductance Ca2+- activated K+ channels and cardiac arrhythmias. Heart Rhythm 12:1845–1851PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • J. Rick Turner
    • 1
  • Dilip R. Karnad
    • 2
  • Snehal Kothari
    • 3
  1. 1.Cardiac Safety Services QuintilesDurhamUSA
  2. 2.Research TeamCardiac Safety Services QuintilesMumbaiIndia
  3. 3.Cardiac Safety Services Global HeadCardiac Safety Center of Excellence QuintilesMumbaiIndia

Personalised recommendations