Skip to main content

Vision Statement for Multiple Myeloma: Future Directions

  • Chapter
  • First Online:
Book cover Plasma Cell Dyscrasias

Part of the book series: Cancer Treatment and Research ((CTAR,volume 169))

Abstract

There has been great progress in the management and patient outcome in multiple myeloma due to the use of novel agents including immunomodulatory drugs and proteasome inhibitors; nonetheless, novel agents remain an urgent need. The three promising Achilles heals or vulnerabilities to be targetted in novel therapies include: protein degradation by the ubiquitin proteasome or aggresome pathways; restoring autologous antimyeloma immunity; and targeting aberrant biology resulting from constitutive and ongoing DNA damage in tumour cells. Scientifically based therapies targeting these vulnerabilities used early in the disease course, ie smouldering multiple myeloma, have the potential to significantly alter the natural history and transform myeloma into a chronic and potentially curable disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bae J, Smith R, Daley J et al (2012) Myeloma-specific multiple peptides able to generate cytotoxic T lymphocytes: a potential therapeutic application in multiple myeloma and other plasma cell disorders. Clin Cancer Res 17:4850–4860

    Article  Google Scholar 

  2. Bae J, Rao P, Voskertchian A et al (2015) A multiepitope of XBP-1, CD138, and CS1 peptides induces myeloma-specific cytotoxic T lymphocytes in T cells of smoldering myeloma patients. Leukemia 29:218–229

    Article  CAS  PubMed  Google Scholar 

  3. Bae J, Keskin D, Cowens K et al (in press) Lenalidomide polarizes Th1 specific anti-tumor response and expands XBP-1 antigen-specific central memory CD3 + CD8 + T cells against various solid tumors. Leukemia

    Google Scholar 

  4. Bianchi G, Richardson PR, Anderson KC (2014) Best treatment strategies in high-risk multiple myeloma: navigating a gray area. J Clin Oncol 32:2125–2132

    Article  PubMed  Google Scholar 

  5. Bianchi G, Richardson PG, Anderson KC (2015) Promising therapies in multiple myeloma. Blood 16:300–310

    Article  Google Scholar 

  6. Bolli N, Avet-Loiseau H, Wedge DC et al (2014) Heterogeneity of somatic mutations, clonal architecture and genomic evolution in multiple myeloma. Nat Commun 5:2997

    Article  PubMed  PubMed Central  Google Scholar 

  7. Chauhan D, Catley L, Li G et al (2005) A novel orally active proteasome inhibitor induces apoptosis in multiple myeloma cells with mechanisms distinct from Bortezomib. Cancer Cell 8:407–419

    Article  CAS  PubMed  Google Scholar 

  8. Chauhan D, Singh AV, Brahmandam M et al (2009) Functional interaction of plasmacytoid dendritic cells with multiple myeloma cells: a novel therapeutic target. Cancer Cell 16:309–323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chauhan D, Singh A, Richardson P et al (2009) Combination of novel proteasome inhibitor NPI-0052 and lenalidomide trigger in vivo synergistic cytotoxicity in multiple myeloma. Blood 115:834–845

    Article  PubMed  Google Scholar 

  10. Chauhan D, Tian Z, Zhou B et al (2011) In vitro and in vivo selective antitumor activity of a novel orally bioavailable proteasome inhibitor MLN9708 against multiple myeloma cells. Clin Cancer Res 17:5311–5321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chauhan D, Tian Z, Nicolson B et al (2012) A novel small molecule inhibitor of ubiquitin-specific protease-7 induces apoptosis in multiple myeloma cells and overcomes bortezomib resistance. Cancer Cell 22:345–358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cottini F, Anderson KC (2015) Novel therapeutic targets in multiple myeloma. Clin Adv Hematol Oncol 13:236–248

    PubMed  Google Scholar 

  13. Cottini F, Hideshima T, Xu C et al (2014) Rescue of YAP1 triggers DNA damage-induced apoptosis in hematological cancers. Nat Med 20:599–606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cottini F, Hideshima T, Suzuki R et al (2015) Synthetic lethal approaches exploiting DNA damage in aggressive myeloma. Cancer Discov 5:972–87

    Google Scholar 

  15. Das DS, Ray A, Song Y et al (2015) Synergistic anti-myeloma activity of a proteasome inhibitor marizomib and immunomodulatory drug pomalidomide. Br J Haematol 171:798–812

    Google Scholar 

  16. de Weers M, Yu-Tzu Tai, van der Veer MS et al (2011) Daratumumab, a novel therapeutic human CD38 monoclonal antibody, induces killing of multiple myeloma and other hematological tumors. J Immunol 186:1840–1848

    Article  PubMed  Google Scholar 

  17. Dimopoulos M, Jagannath S, Yoon S-Y et al (2013) Vantage 088: an international, multicenter, randomized double-blind study of vorinostat (MK-0683) or placebo in combination with bortezomib in patients with multiple myeloma. Lancet Oncol 14:1129–1140

    Article  CAS  PubMed  Google Scholar 

  18. Gandhi AK, Kang J, Havens CG et al (2014) Immunomodulatory agents lenalidomide and pomalidomide co-stimulate T cells by inducing degradation of T cell repressors Ikaros and Aiolos via modulation of the E3 ubiquitin ligase complex CRL4(CRBN.). Br J Haematol 164:811–821

    Article  CAS  PubMed  Google Scholar 

  19. Garfall AL, Maus MV, Hwang WT et al (2015) Chimeric antigen receptor T cells against CD19 for multiple myeloma. N Engl J Med 373:1040–1047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gorgun G, Calabrese E, Soydan E et al (2010) Immunomodulatory effects of lenalidomide and pomalidmide on interaction of tumor and bone marrow accessory cells in multiple myleoma. Blood 116:3227–3237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gorgun G, Whitehill G, Anderson JL et al (2012) Tumor promoting immune suppressive myeloid derived suppressor cells in multiple myeloma microenvironment. Blood 121:2975–2987

    Article  Google Scholar 

  22. Gorgun G, Samur MK, Cowens KB et al (2015) Lenalidomide enhances immune checkpoint blockade induced immune response in multiple myeloma. Clin Cancer Res 21:4607–18

    Google Scholar 

  23. Hideshima T, Chauhan D, Shima Y et al (2000) Thalidomide and its analogues overcome drug resistance of human multiple myeloma cells to conventional therapy. Blood 96:2943–2950

    CAS  PubMed  Google Scholar 

  24. Hideshima T, Richardson P, Chauhan D et al (2001) The proteasome inhibitor PS-341 inhibits growth, induces apoptosis, and overcomes drug resistance in human multiple myeloma cells. Cancer Res 61:3071–3076

    CAS  PubMed  Google Scholar 

  25. Hideshima T, Bradner J, Wong J et al (2005) Small molecule inhibition of proteasome and aggresome function induces synergistic anti-tumor activity in multiple myeloma. Proc Natl Acad Sci 102:8567–8572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hideshima T, Mitsiades C, Tonon G et al (2007) Understanding multiple myeloma pathogenesis and the role of bone marrow microenvironment to identify new therapeutic targets. Nat Rev Cancer 7:585–598

    Article  CAS  PubMed  Google Scholar 

  27. Jiang H, Acharya C, An G et al (2016) SAR650984 directly induces multiple myeloma cell death via lysosomal-associated and apopototic pathways, which is further enhanced by pomalidomide. Leukemia 30:399–408

    Google Scholar 

  28. Kawano Y, Moschetta M, Manier S et al (2015) Targeting the bone marrow microenvironment in multiple myeloma. Immunol Rev 263:160–172

    Article  PubMed  Google Scholar 

  29. Kronke J, Udeshi ND, Narla A et al (2014) Lenalidomide causes selective degradation of IKZF1 and IKZF3 in multiple myeloma cells. Science 343:301–305

    Article  PubMed  Google Scholar 

  30. Kumar SK, Bensinger WI, Zimmerman TM et al (2014) Phase 1 study of weekly dosing with the investigational oral proteasome inhibitor ixazomib in relapsed/refractory multiple myeloma. Blood 124:1047–1055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Laubach JP, Tai YT, Richardson PG, Anderson KC (2014) Daratumumab granted breakthrough drug status. Expert Opin Investig Drugs 23:445–452

    Article  CAS  PubMed  Google Scholar 

  32. Lichter DI, Danaee H, Pickard MD et al (2012) Sequence analysis of β-subunit genes of the 20S proteasome in patients with relapsed multiple myeloma treated with bortezomib or dexamethasone. Blood 120:4513–4516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lohr JG, Stojanov P, Carter SL et al (2014) Widespread genetic heterogeneity in multiple myeloma: implications for targeted therapy. Cancer Cell 25:1–10

    Article  Google Scholar 

  34. Lonial S, Dimopoulos Palumbo A et al (2015) Elotuzumab therapy for relapsed or refractory multiple myeloma. N Engl J Med 373:621–631

    Article  CAS  PubMed  Google Scholar 

  35. Lu G, Middleton RE, Sun H et al (2014) The myeloma drug lenalidomide promotes the cereblon-dependent destruction of Ikaros proteins. Science 343(6168):305–309

    Article  CAS  PubMed  Google Scholar 

  36. Rashid N, Sperling A, Bolli N, Wedge D, Van Loo P, Tai Y-T, Shammas M, Fulciniti M, Smur M, Richardson P, Magrangeas F, Minvielle S, Futreal P, Anderson K, Avet-Loiseau H, Campbell P, Parmigiani G, Munshi N (2014) Differential and limited expression of mutant alleles in multiple myeloma. Blood 124:3110–3117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ray A, Das DS, Song Y, Richardson P, Chauhan D, Anderson KC (2015) Targeting PD1-PDL1 in immune checkpoint in plasmacytoid dendritic cell interactions with T cells, natural killer cells, and multiple myeloma cells. Leukemia 29: 1441–1444

    Google Scholar 

  38. Richardson PG, Weller E, Lonial S et al (2010) Lenalidomide, bortezomib, and dexamethasone combination therapy in patients with newly-diagnosed multiple myeloma. Blood 116:679–686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Richardson PG, Moreau P, Laubach JP et al (2015) The investigational proteasome inhibitor ixazomib for the treatment of multiple myeloma. Future Oncol 11:1153–1168

    Article  CAS  PubMed  Google Scholar 

  40. Richardson PG, Jagannath S, Moreau P et al (2015) Elotuzumab in combination with lenalidomide and dexamethasone in patients with relapsed multiple myeloma: final results from the 1703 phase 1b/2, open-label, randomized study. Lancet Oncol 2:e516–27

    Google Scholar 

  41. Rosenblatt J, Vasir B, Uhl L et al (2011) Vaccination with DC/tumor fusion cells results in cellular and humoral anti-tumor immune responses in patients with multiple myeloma. Blood 117:393–402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Rosenblatt J, Avivi I, Vasir B et al (2013) Vaccination with dendritic cell/tumor fusions following autologous stem cell transplant induces immunologic and clinical responses in multiple myeloma patients. Clin Cancer Res 19:3640–3648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. San Miguel JF, Richardson PG, Gunther A et al (2013) A Phase Ib study of panobinostat and bortezomib in relapsed or relapsed and refractory multiple myeloma. J Clin Oncol 31:3696–3703

    Article  CAS  PubMed  Google Scholar 

  44. Santo A, Hideshima T, Li-Jen Kung A et al (2012) Preclinical activity, pharmacodynamic and pharmacokinetic properties of a selective HDAC6 inhibitor, ACY-1215, in combination with bortezomib in multiple myeloma. Blood 119:2579–2589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Siegel DS, Martin T, Wang M et al (2012) A phase 2 study of single-agent carfilzomib in patients with relapsed and refractory multiple myeloma. Blood 120:2817–2825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Stewart AK, Rajkumar SV, Dimopoulos MA et al (2015) Carfilzomib, lenalidomide, and dexamethasone for relapsed multiple myeloma. N Engl J Med 372:142–152

    Article  PubMed  Google Scholar 

  47. Tai Y-T, Dillon M, Song W et al (2008) Anti-CS-1 humanized monoclonal antibody HuLuc63 inhibits myeloma cell adhesion and induces antibody-dependent cellular cytotoxicity in the bone marrow milieu. Blood 112:1329–1337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ze Tian, D’Arcy P, Wang X et al (2014) A novel small molecule inhibitor of deubiquitylating enzyme USP14 and UCHL5 induces apoptosis in myeloma cells and overcomes bortezomib resistance. Blood 123:706–716

    Article  Google Scholar 

  49. Vij R, Wang M, Kaufman JL et al (2012) An open-label, single-arm, phase 2 (PX-171-004) study of single-agent carfilzomib in bortezomib-naive patients with relapsed and/or refractory multiple myeloma. Blood 119:5661–5670

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth C. Anderson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Anderson, K.C. (2016). Vision Statement for Multiple Myeloma: Future Directions. In: Roccaro, A., Ghobrial, I. (eds) Plasma Cell Dyscrasias. Cancer Treatment and Research, vol 169. Springer, Cham. https://doi.org/10.1007/978-3-319-40320-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40320-5_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40318-2

  • Online ISBN: 978-3-319-40320-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics