Skip to main content

Histamine Function in Nervous Systems

  • Chapter
  • First Online:
Book cover Histamine Receptors

Part of the book series: The Receptors ((REC,volume 28))

Abstract

Histamine is evolutionarily highly conserved as a signaling molecule, a neuromodulator, and a neurotransmitter from bacteria to mammals that fulfills basic demands of living like the organization of behavioral state. From mussels to mammals, it gates ion channels like classical ionotropic transmitters. These relatively neglected functions are treated for arthropods and mollusks. In vertebrate brains, histamine actions are mostly mediated by three of the four known G-protein-coupled receptors: H1R, H2R, and H3R. Histamine also modifies other receptor proteins through allosteric interactions. We describe and discuss the anatomical, biophysical, and physiological properties of histaminergic neurons as well as their projections and actions on target neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McCaman RE, Weinreich D. On the nature of histamine-mediated slow hyperpolarizing synaptic potentials in identified molluscan neurones. J Physiol. 1982;328:485–506.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Carpenter DO, Gaubatz GL. H1 and H2 histamine receptors on Aplysia neurones. Nature. 1975;254(5498):343–4.

    CAS  PubMed  Google Scholar 

  3. Panula P, Yang HY, Costa E. Histamine-containing neurons in the rat hypothalamus. Proc Natl Acad Sci U S A. 1984;81(8):2572–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Watanabe T, Maeyama K, Wada H. Histamine. Tanpakushitsu Kakusan Koso. 1984;29(12 Suppl):1443–58.

    CAS  PubMed  Google Scholar 

  5. Ercan-Sencicek AG, Stillman AA, Ghosh AK, Bilguvar K, O’Roak BJ, Mason CE, et al. L-histidine decarboxylase and Tourette’s syndrome. N Engl J Med. 2010;362(20):1901–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Ericson H, Watanabe T, Kohler C. Morphological analysis of the tuberomammillary nucleus in the rat brain: delineation of subgroups with antibody against L-histidine decarboxylase as a marker. J Comp Neurol. 1987;263(1):1–24.

    CAS  PubMed  Google Scholar 

  7. Yu X, Ye Z, Houston CM, Zecharia AY, Ma Y, Zhang Z, et al. Wakefulness is governed by GABA and histamine cotransmission. Neuron. 2015;87(1):164–78.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Airaksinen MS, Paetau A, Paljarvi L, Reinikainen K, Riekkinen P, Suomalainen R, et al. Histamine neurons in human hypothalamus: anatomy in normal and Alzheimer diseased brains. Neuroscience. 1991;44(2):465–81.

    CAS  PubMed  Google Scholar 

  9. Giannoni P, Medhurst AD, Passani MB, Giovannini MG, Ballini C, Corte LD, et al. Regional differential effects of the novel histamine H3 receptor antagonist 6-[(3-cyclobutyl-2,3,4,5-tetrahydro-1H-3-benzazepin-7-yl)oxy]-N-methyl-3-pyridine carboxamide hydrochloride (GSK189254) on histamine release in the central nervous system of freely moving rats. J Pharmacol Exp Ther. 2010;332(1):164–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Airaksinen MS, Reinikainen K, Riekkinen P, Panula P. Neurofibrillary tangles and histamine-containing neurons in Alzheimer hypothalamus. Agents Actions. 1991;33(1–2):104–7.

    CAS  PubMed  Google Scholar 

  11. Lin JS. Brain structures and mechanisms involved in the control of cortical activation and wakefulness, with emphasis on the posterior hypothalamus and histaminergic neurons. Sleep Med Rev. 2000;4(5):471–503.

    CAS  PubMed  Google Scholar 

  12. Taddese A, Bean BP. Subthreshold sodium current from rapidly inactivating sodium channels drives spontaneous firing of tuberomammillary neurons. Neuron. 2002;33(4):587–600.

    CAS  PubMed  Google Scholar 

  13. Greene RW, Haas HL, Reiner PB. Two transient outward currents in histamine neurones of the rat hypothalamus in vitro. J Physiol. 1990;420:149–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Stevens DR, Eriksson KS, Brown RE, Haas HL. The mechanism of spontaneous firing in histamine neurons. Behav Brain Res. 2001;124(2):105–12.

    CAS  PubMed  Google Scholar 

  15. Takeshita Y, Watanabe T, Sakata T, Munakata M, Ishibashi H, Akaike N. Histamine modulates high-voltage-activated calcium channels in neurons dissociated from the rat tuberomammillary nucleus. Neuroscience. 1998;87(4):797–805.

    CAS  PubMed  Google Scholar 

  16. Sergeeva OA, Eriksson KS, Sharonova IN, Vorobjev VS, Haas HL. GABA(A) receptor heterogeneity in histaminergic neurons. Eur J Neurosci. 2002;16(8):1472–82.

    PubMed  Google Scholar 

  17. Sergeeva OA, Eriksson KS, Haas HL. Glycine receptor mediated responses in rat histaminergic neurons. Neurosci Lett. 2001;300(1):5–8.

    CAS  PubMed  Google Scholar 

  18. Prast H, Prast M, Philippu A. H3 autoreceptors and muscarinic acetylcholine receptors modulate histamine release in the anterior hypothalamus of freely moving rats. Agents Actions. 1994;41(Spec No):C64–5.

    CAS  PubMed  Google Scholar 

  19. Yanovsky Y, Li S, Klyuch BP, Yao Q, Blandina P, Passani MB, et al. L-Dopa activates histaminergic neurons. J Physiol. 2011;589(Pt 6):1349–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Sergeeva OA, Amberger BT, Haas HL. Editing of AMPA and serotonin 2C receptors in individual central neurons, controlling wakefulness. Cell Mol Neurobiol. 2007;27(5):669–80.

    CAS  PubMed  Google Scholar 

  21. Siegel JM, Boehmer LN. Narcolepsy and the hypocretin system—where motion meets emotion. Nat Clin Pract Neurol. 2006;2(10):548–56.

    CAS  PubMed  Google Scholar 

  22. Zeitzer JM, Nishino S, Mignot E. The neurobiology of hypocretins (orexins), narcolepsy and related therapeutic interventions. Trends Pharmacol Sci. 2006;27(7):368–74.

    CAS  PubMed  Google Scholar 

  23. Parmentier R, Kolbaev S, Klyuch BP, Vandael D, Lin JS, Selbach O, et al. Excitation of histaminergic tuberomamillary neurons by thyrotropin-releasing hormone. J Neurosci. 2009;29(14):4471–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Tasneem A, Iyer LM, Jakobsson E, Aravind L. Identification of the prokaryotic ligand-gated ion channels and their implications for the mechanisms and origins of animal Cys-loop ion channels. Genome Biol. 2005;6(1):R4.

    PubMed  Google Scholar 

  25. McClintock TS, Ache BW. Histamine directly gates a chloride channel in lobster olfactory receptor neurons. Proc Natl Acad Sci U S A. 1989;86(20):8137–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Hardie RC. A histamine-activated chloride channel involved in neurotransmission at a photoreceptor synapse. Nature. 1989;339(6227):704–6.

    CAS  PubMed  Google Scholar 

  27. Pantazis A, Segaran A, Liu CH, Nikolaev A, Rister J, Thum AS, et al. Distinct roles for two histamine receptors (hclA and hclB) at the Drosophila photoreceptor synapse. J Neurosci. 2008;28(29):7250–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Haas HL, Sergeeva OA, Selbach O. Histamine in the nervous system. Physiol Rev. 2008;88(3):1183–241.

    CAS  PubMed  Google Scholar 

  29. Chiel HJ, Weiss KR, Kupfermann I. Multiple roles of a histaminergic afferent neuron in the feeding behavior of Aplysia. Trends Neurosci. 1990;13(6):223–7.

    CAS  PubMed  Google Scholar 

  30. Chiel HJ, Kupfermann I, Weiss KR. An identified histaminergic neuron can modulate the outputs of buccal-cerebral interneurons in Aplysia via presynaptic inhibition. J Neurosci. 1988;8(1):49–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Saras A, Gisselmann G, Vogt-Eisele AK, Erlkamp KS, Kletke O, Pusch H, et al. Histamine action on vertebrate GABAA receptors: direct channel gating and potentiation of GABA responses. J Biol Chem. 2008;283(16):10470–5.

    CAS  PubMed  Google Scholar 

  32. Kletke O, Gisselmann G, May A, Hatt H, A Sergeeva O. Partial agonism of taurine at gamma-containing native and recombinant GABAA receptors. PLoS One. 2013;8(4), e61733.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Kletke O, Sergeeva OA, Lorenz P, Oberland S, Meier JC, Hatt H, et al. New insights in endogenous modulation of ligand-gated ion channels: histamine is an inverse agonist at strychnine sensitive glycine receptors. Eur J Pharmacol. 2013;710(1–3):59–66.

    CAS  PubMed  Google Scholar 

  34. Yanovsky Y, Schubring SR, Yao Q, Zhao Y, Li S, May A, et al. Waking action of ursodeoxycholic acid (UDCA) involves histamine and GABAA receptor block. PLoS One. 2012;7(8), e42512.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Diewald L, Heimrich B, Busselberg D, Watanabe T, Haas HL. Histaminergic system in co-cultures of hippocampus and posterior hypothalamus: a morphological and electrophysiological study in the rat. Eur J Neurosci. 1997;9(11):2406–13.

    CAS  PubMed  Google Scholar 

  36. Hatton GI, Yang QZ. Ionotropic histamine receptors and H2 receptors modulate supraoptic oxytocin neuronal excitability and dye coupling. J Neurosci. 2001;21(9):2974–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Lee KH, Broberger C, Kim U, McCormick DA. Histamine modulates thalamocortical activity by activating a chloride conductance in ferret perigeniculate neurons. Proc Natl Acad Sci U S A. 2004;101(17):6716–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Haas HL, Anderson EG, Hosli L. Histamine and metabolites: their effects and interactions with convulsants on brain stem neurons. Brain Res. 1973;51:269–78.

    CAS  PubMed  Google Scholar 

  39. Lakoski JM, Aghajanian GK, Gallager DW. Interaction of histamine H2-receptor antagonists with GABA and benzodiazepine binding sites in the CNS. Eur J Pharmacol. 1983;88(2–3):241–5.

    CAS  PubMed  Google Scholar 

  40. Payne GW, Neuman RS. Effects of hypomagnesemia on histamine H1 receptor-mediated facilitation of NMDA responses. Br J Pharmacol. 1997;121(2):199–204.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Bekkers JM, Stevens CF. NMDA receptors at excitatory synapses in the hippocampus: test of a theory of magnesium block. Neurosci Lett. 1993;156(1–2):73–7.

    CAS  PubMed  Google Scholar 

  42. Vorobjev VS, Sharonova IN, Walsh IB, Haas HL. Histamine potentiates N-methyl-D-aspartate responses in acutely isolated hippocampal neurons. Neuron. 1993;11(5):837–44.

    CAS  PubMed  Google Scholar 

  43. Green JP. Histamine and the nervous system. Fed Proc. 1964;23:1095–102.

    CAS  PubMed  Google Scholar 

  44. Saybasili H, Stevens DR, Haas HL. pH-dependent modulation of N-methyl-D-aspartate receptor-mediated synaptic currents by histamine in rat hippocampus in vitro. Neurosci Lett. 1995;199(3):225–7.

    CAS  PubMed  Google Scholar 

  45. Yanovsky Y, Reymann K, Haas HL. pH-dependent facilitation of synaptic transmission by histamine in the CA1 region of mouse hippocampus. Eur J Neurosci. 1995;7(10):2017–20.

    CAS  PubMed  Google Scholar 

  46. Williams K. Subunit-specific potentiation of recombinant N-methyl-D-aspartate receptors by histamine. Mol Pharmacol. 1994;46(3):531–41.

    CAS  PubMed  Google Scholar 

  47. Hansen KB, Mullasseril P, Dawit S, Kurtkaya NL, Yuan H, Vance KM, et al. Implementation of a fluorescence-based screening assay identifies histamine H3 receptor antagonists clobenpropit and iodophenpropit as subunit-selective N-methyl-D-aspartate receptor antagonists. J Pharmacol Exp Ther. 2010;333(3):650–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Faucard R, Armand V, Heron A, Cochois V, Schwartz JC, Arrang JM. N-methyl-D-aspartate receptor antagonists enhance histamine neuron activity in rodent brain. J Neurochem. 2006;98(5):1487–96.

    CAS  PubMed  Google Scholar 

  49. Ikoma A, Steinhoff M, Stander S, Yosipovitch G, Schmelz M. The neurobiology of itch. Nat Rev Neurosci. 2006;7(7):535–47.

    CAS  Google Scholar 

  50. Koerner P, Hesslinger C, Schaefermeyer A, Prinz C, Gratzl M. Evidence for histamine as a transmitter in rat carotid body sensor cells. J Neurochem. 2004;91(2):493–500.

    CAS  PubMed  Google Scholar 

  51. Whyment AD, Blanks AM, Lee K, Renaud LP, Spanswick D. Histamine excites neonatal rat sympathetic preganglionic neurons in vitro via activation of H1 receptors. J Neurophysiol. 2006;95(4):2492–500.

    CAS  PubMed  Google Scholar 

  52. Gorelova N, Reiner PB. Histamine depolarizes cholinergic septal neurons. J Neurophysiol. 1996;75(2):707–14.

    CAS  PubMed  Google Scholar 

  53. Uteshev VV, Knot HJ. Somatic Ca(2+) dynamics in response to choline-mediated excitation in histaminergic tuberomammillary neurons. Neuroscience. 2005;134(1):133–43.

    CAS  PubMed  Google Scholar 

  54. Uteshev VV, Stevens DR, Haas HL. Alpha-bungarotoxin-sensitive nicotinic responses in rat tuberomammillary neurons. Pflugers Arch. 1996;432(4):607–13.

    CAS  PubMed  Google Scholar 

  55. Smith CC, Greene RW. CNS dopamine transmission mediated by noradrenergic innervation. J Neurosci. 2012;32(18):6072–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Korotkova TM, Haas HL, Brown RE. Histamine excites GABAergic cells in the rat substantia nigra and ventral tegmental area in vitro. Neurosci Lett. 2002;320(3):133–6.

    CAS  PubMed  Google Scholar 

  57. Zhou FW, Xu JJ, Zhao Y, LeDoux MS, Zhou FM. Opposite functions of histamine H1 and H2 receptors and H3 receptor in substantia nigra pars reticulata. J Neurophysiol. 2006;96(3):1581–91.

    CAS  PubMed  Google Scholar 

  58. Tabarean IV. Histamine receptor signaling in energy homeostasis. Neuropharmacology. 2015.

    Google Scholar 

  59. Liou SY, Shibata S, Yamakawa K, Ueki S. Inhibitory and excitatory effects of histamine on suprachiasmatic neurons in rat hypothalamic slice preparation. Neurosci Lett. 1983;41(1–2):109–13.

    CAS  PubMed  Google Scholar 

  60. Stehle J. Effects of histamine on spontaneous electrical activity of neurons in rat suprachiasmatic nucleus. Neurosci Lett. 1991;130(2):217–20.

    CAS  PubMed  Google Scholar 

  61. Scott G, Piggins HD, Semba K, Rusak B. Actions of histamine in the suprachiasmatic nucleus of the Syrian hamster. Brain Res. 1998;783(1):1–9.

    CAS  PubMed  Google Scholar 

  62. Li Z, Hatton GI. Histamine suppresses non-NMDA excitatory synaptic currents in rat supraoptic nucleus neurons. J Neurophysiol. 2000;83(5):2616–25.

    CAS  PubMed  Google Scholar 

  63. Bealer SL, Crowley WR. Histaminergic control of oxytocin release in the paraventricular nucleus during lactation in rats. Exp Neurol. 2001;171(2):317–22.

    CAS  PubMed  Google Scholar 

  64. Hatton GI, Li ZH. Neurophysiology of magnocellular neuroendocrine cells: recent advances. Prog Brain Res. 1998;119:77–99.

    CAS  PubMed  Google Scholar 

  65. Haas HL. Histamine: action on single hypothalamic neurones. Brain Res. 1974;76(2):363–6.

    CAS  PubMed  Google Scholar 

  66. Renaud LP. Histamine microiontophoresis on identified hypothalamic neurons: 3 patterns of response in the ventromedial nucleus of the rat. Brain Res. 1976;115(2):339–44.

    CAS  PubMed  Google Scholar 

  67. McCormick DA, Williamson A. Modulation of neuronal firing mode in cat and guinea pig LGNd by histamine: possible cellular mechanisms of histaminergic control of arousal. J Neurosci. 1991;11(10):3188–99.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Weiler HT, Hasenohrl RU, van Landeghem AA, van Landeghem M, Brankack J, Huston JP, et al. Differential modulation of hippocampal signal transfer by tuberomammillary nucleus stimulation in freely moving rats dependent on behavioral state. Synapse. 1998;28(4):294–301.

    CAS  PubMed  Google Scholar 

  69. Brown RE, Haas HL. On the mechanism of histaminergic inhibition of glutamate release in the rat dentate gyrus. J Physiol. 1999;515(Pt 3):777–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Brown RE, Reymann KG. Histamine H3 receptor-mediated depression of synaptic transmission in the dentate gyrus of the rat in vitro. J Physiol. 1996;496(Pt 1):175–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Manahan-Vaughan D, Reymann KG, Brown RE. In vivo electrophysiological investigations into the role of histamine in the dentate gyrus of the rat. Neuroscience. 1998;84(3):783–90.

    CAS  PubMed  Google Scholar 

  72. Haas H, Panula P. The role of histamine and the tuberomamillary nucleus in the nervous system. Nat Rev Neurosci. 2003;4(2):121–30.

    CAS  PubMed  Google Scholar 

  73. Bliss TV, Lomo T. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol. 1973;232(2):331–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Yanovsky Y, Haas HL. Histamine increases the bursting activity of pyramidal cells in the CA3 region of mouse hippocampus. Neurosci Lett. 1998;240(2):110–2.

    CAS  PubMed  Google Scholar 

  75. Buzsaki G, Draguhn A. Neuronal oscillations in cortical networks. Science. 2004;304(5679):1926–9.

    CAS  PubMed  Google Scholar 

  76. Selbach O, Brown RE, Haas HL. Long-term increase of hippocampal excitability by histamine and cyclic AMP. Neuropharmacology. 1997;36(11–12):1539–48.

    CAS  PubMed  Google Scholar 

  77. Haas HL, Konnerth A. Histamine and noradrenaline decrease calcium-activated potassium conductance in hippocampal pyramidal cells. Nature. 1983;302(5907):432–4.

    CAS  PubMed  Google Scholar 

  78. Chepkova AN, Sergeeva OA, Haas HL. Carbenoxolone impairs LTP and blocks NMDA receptors in murine hippocampus. Neuropharmacology. 2008;55(2):139–47.

    CAS  PubMed  Google Scholar 

  79. Knoche A, Yokoyama H, Ponomarenko A, Frisch C, Huston J, Haas HL. High-frequency oscillation in the hippocampus of the behaving rat and its modulation by the histaminergic system. Hippocampus. 2003;13(2):273–80.

    CAS  PubMed  Google Scholar 

  80. Lin JS, Anaclet C, Sergeeva OA, Haas HL. The waking brain: an update. Cell Mol Life Sci. 2011;68(15):2499–512.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helmut L. Haas M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sergeeva, O.A., Haas, H.L. (2016). Histamine Function in Nervous Systems. In: Blandina, P., Passani, M. (eds) Histamine Receptors. The Receptors, vol 28. Humana, Cham. https://doi.org/10.1007/978-3-319-40308-3_9

Download citation

Publish with us

Policies and ethics