Skip to main content

Electric Vehicles, Lightweight Design and Environmental Impacts

  • Chapter
  • First Online:
Environmental Assessment of Lightweight Electric Vehicles

Abstract

This chapter provides the necessary theoretical background to understand the environmental impacts of LEVs. For this purpose, the chapter is divided into four parts. First, the relevant aspects of EVs and lightweight design are presented. Then, environmental impacts are discussed and Life Cycle Assessment, a method to evaluate these impacts, is introduced. Finally, the environmental impacts of LEVs are explained and the demand for a corresponding Life Cycle Assessment concept is derived.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    An elementary flow is an “material or energy entering the system being studied that has been drawn from the environment without previous human transformation, or material or energy leaving the system being studied that is released into the environment without subsequent human transformation” ISO (14044:2006).

  2. 2.

    Detailed descriptions of the most common impact categories can be found in Baumann and Tillman (2009) and Hauschild and Huijbregts (2015).

References

  • Achleitner A, Antony P, Ascher F, Berger E, Burgers C, Döllner G, Friedrich JK, Futschik HD, Gruber M, Kiesgen G, Mohrdieck CH, Noreikat KE, Schulze H, Wagner M, Wöhr M (2013) Formen und neue Konzepte. In: Braess H, Seiffert U (eds) Vieweg-Handbuch Kraftfahrzeugtechnik, 7th edn. Springer Vieweg, Wiesbaden, pp 119–219

    Google Scholar 

  • Ashby MF (2012) Materials and the environment: eco-informed material choice, 2nd edn. Butterworth-Heinemann, Waltham

    Google Scholar 

  • Ayoubi M, Eilemann A, Mankau H, Pantow E, Repmann C, Seiffert U, Wawzyniak M, Wiebelt A (2013) Fahrzeugphysik. In: Braess H, Seiffert U (eds) Vieweg-Handbuch Kraftfahrzeugtechnik, 7th edn. Springer Vieweg, Wiesbaden, pp 47–118

    Google Scholar 

  • Barlow TJ, Latham S, McCrae IS, Boulter PG (2009) A reference book of driving cycles for use in the measurement of road vehicle emissions

    Google Scholar 

  • Baumann H, Tillman A (2009) The hitch hikers’s guide to LCA: an orientation in life cycle assessment methodology and application, Ed. 1:3. Studentlitteratur, Lund

    Google Scholar 

  • Bilitewski B, Bringezu S, Bro-Rasmussen F, Clift R, Frischknecht R, Speck S, Soerup P, Udo de Haes HA (1998) CHAINET definition document. Leiden, Netherlands

    Google Scholar 

  • Buchert M, Jenseit W, Merz C, Schüler D (2011) Ökobilanz zum “Recycling von Lithium-Ionen-Batterien” (LithoRec)

    Google Scholar 

  • Calantone RJ, Tamer Cavusgil S, Schmidt JB, Shin G (2004) Internationalization and the dynamics of product adaptation—an empirical investigation. J Prod Innov Manage 21(3):185–198. doi:10.1111/j.0737-6782.2004.00069.x

    Article  Google Scholar 

  • Consoli F, Allen D, Boustead I, de Oude N, Fava J, Franklin W, Quay B, Parrish R, Perriman R, Postlethwaite D, Seguin J, Vigon B (1993) Guidelines for life-cycle assessment: a code of practice. Brussels, Belgium

    Google Scholar 

  • Curran MA (2012) Life cycle assessment handbook: a guide for environmentally sustainable products. Wiley, Hoboken

    Book  Google Scholar 

  • Del Duce A, Egede P, Öhlschläger G, Dettmer T, Althaus H, Bütler T, Szczechowicz E (2013) Guidelines for the LCA of electric vehicles. eLCAr

    Google Scholar 

  • Directive 2000/53/EC of the European Parliament and the Council of the 18 September 2000 on end-of-life vehicles

    Google Scholar 

  • Dubreuil A, Young SB, Atherton J, Gloria TP (2010) Metals recycling maps and allocation procedures in life cycle assessment. Int J Life Cycle Assess 15(6):621–634. doi:10.1007/s11367-010-0174-5

    Article  Google Scholar 

  • Ecker M (2015) Lithium-Ionen-Batterien. In: Tschöke H (ed) Die Elektrifizierung des Antriebsstrangs: Basiswissen. Springer Fachmedien Wiesbaden GmbH, Wiesbaden, pp 60–67

    Google Scholar 

  • Eckstein L, Schmitt F, Hartmann B (2010) Leichtbau bei Elektrofahrzeugen. ATZ Automobiltech Z 112(11):788–795. doi:10.1007/BF03222207

    Article  Google Scholar 

  • Ecoinvent (2015) Ecoinvent database. http://ecoinvent.ch/. Accessed 20 Oct 2015

  • Ekvall T, Tillman A (1997) Open-loop recycling: criteria for allocation procedures. Int J Life Cycle Assess 2(3):155–162. doi:10.1007/BF02978810

    Article  Google Scholar 

  • Ellenrieder G, Gänsicke T, Goede M, Herrmann HG (2013) Die Leichtbaustrategien. In: Friedrich HE (ed) Leichtbau in der Fahrzeugtechnik. Springer Vieweg, Wiesbaden

    Google Scholar 

  • Ellingsen LA, Majeau-Bettez G, Singh B, Srivastava AK, Valøen LO, Strømman AH (2014) Life cycle assessment of a lithium-ion battery vehicle pack. J Ind Ecol 18(1):113–124. doi:10.1111/jiec.12072

    Article  Google Scholar 

  • European Commission (2011) International reference life cycle data system (ILCD) handbook: general guide for life cycle assessment—detailed guidance, 1st edn, Mar 2010. Luxembourg

    Google Scholar 

  • European Commission—Joint Research Center (2015) ELCD 3.2. http://eplca.jrc.ec.europa.eu/ELCD3/index.xhtml?stock=default. Accessed 22 Nov 2015

  • European Communities (2001) Economy-wide material flow accounts and derived indicators: a methodological guide, 2000th edn. Office for Official Publications of the European Communities, Luxembourg

    Google Scholar 

  • Evertz T, Flaxa V, Georgeou Z, Gronebaum R, Kwiaton N, Lesch C, Otto M, Schöttler J, Schulz T, Springub B, Furrer P, Müller A, Dieringa H, Kainer KU, Leyens C, Peters M, Gadow R, Drechsler K, Ziegmann G (2013) Die Leichtbauwerkstoffe für den Fahrzeugbau. In: Friedrich HE (ed) Leichtbau in der Fahrzeugtechnik. Springer Vieweg, Wiesbaden, pp 199–442

    Google Scholar 

  • Faria R, Moura P, Delgado J, de Almeida Anibal T (2012) A sustainability assessment of electric vehicles as a personal mobility system. Energy Convers Manage 61:19–30. doi:10.1016/j.enconman.2012.02.023

    Article  Google Scholar 

  • Finnveden G (2000) On the limitations of life cycle assessment and environmental systems analysis tools in general. Int J Life Cycle Assess 5(4):229–238. doi:10.1007/BF02979365

    Article  Google Scholar 

  • Finnveden G, Moberg Å (2005) Environmental systems analysis tools—an overview. J Clean Prod 13(12):1165–1173. doi:10.1016/j.jclepro.2004.06.004

    Article  Google Scholar 

  • Fischer F, Große T, Kleemann S, Dröder K, Dilger K, Vietor T (2014) Smart production of hybrid material automotive structures at Forschungs Campus Wolfsburg in the “Open Hybrid Lab Factory”. In: ITHEC 2014: 2nd international conference and exhibition on thermoplastic composites, Bremen, Germany, 27–28 Oct 2014, pp 33–36

    Google Scholar 

  • Frees N (2008) Crediting aluminium recycling in LCA by demand or by disposal. Int J Life Cycle Assess 13(3):212–218. doi:10.1065/lca2007.06.348

    Article  Google Scholar 

  • Friedrich HE (ed) (2013) Leichtbau in der Fahrzeugtechnik. ATZ/MTZ-Fachbuch. Springer Vieweg, Wiesbaden

    Google Scholar 

  • Hameyer K, De Doncker RW, van Hoek H, Hübner M, Hennen M, Kampker A, Deutskens C, Ivanescu S, Stolze T, Vetter A, Hagedorn J (2013) Elektrischer Antriebsstrang. In: Kampker A, Vallée D, Schnettler A (eds) Elektromobilität: Grundlagen einer Zukunftstechnologie. Springer Vieweg, Berlin, pp 263–295

    Google Scholar 

  • Hauschild MZ, Huijbregts MA (2015) Life cycle impact assessment. Springer, Netherlands, Dordrecht

    Book  Google Scholar 

  • Hawkins TR, Gausen OM, Strømman AH (2012) Environmental impacts of hybrid and electric vehicles—a review. Int J Life Cycle Assess 17(8):997–1014. doi:10.1007/s11367-012-0440-9

    Article  Google Scholar 

  • Hawkins TR, Singh B, Majeau-Bettez G, Strømman AH (2013) Comparative environmental life cycle assessment of conventional and electric vehicles. J Ind Ecol 17(1):53–64. doi:10.1111/j.1530-9290.2012.00532.x

    Article  Google Scholar 

  • Heijungs R (2014) Ten easy lessons for good communication of LCA. Int J Life Cycle Assess 19(3):473–476. doi:10.1007/s11367-013-0662-5

    Article  Google Scholar 

  • Henning F, Moeller E (eds) (2011) Handbuch Leichtbau: Methoden, Werkstoffe, Fertigung. Hanser, München

    Google Scholar 

  • Herrmann C (2010) Ganzheitliches life cycle management. Springer, Berlin

    Book  Google Scholar 

  • Hornbogen E, Jost N, Thumann M (2008) Werkstoffe, 9th edn. Springer, Berlin [u.a.]

    Google Scholar 

  • Hunt RG, Franklin WE, Hunt RG (1996) LCA—how it came about. Int J Life Cycle Assess 1(1):4–7. doi:10.1007/BF02978624

    Article  Google Scholar 

  • Internationales Institut für Nachhaltigkeitsanalysen und -strategien (2015) IINAS. http://www.iinas.org. Accessed 2 Oct 2015

  • ISO (14040:2006) Environmental management—life cycle assessment—principles and framework (14040:2006)

    Google Scholar 

  • ISO (14044:2006) Environmental management—life cycle assessment—requirements and guidelines (14044:2006)

    Google Scholar 

  • Klein B (2013) Leichtbau-Konstruktion: Berechnungsgrundlagen und Gestaltung, 10th edn. Studium. Springer Vieweg, Wiesbaden

    Google Scholar 

  • Klöpffer W, Grahl B (2009) Ökobilanz (LCA): Ein Leitfaden für Ausbildung und Beruf. Wiley-VCH, Weinheim

    Book  Google Scholar 

  • Klug F (2010) Logistikmanagement in der Automobilindustrie: Grundlagen der Logistik im Automobilbau. VDI-Buch. Springer, Berlin

    Book  Google Scholar 

  • Konz M, Lemke N, Försterling S, Eghtessad M (2011) Spezifische Anforderungen an das Heiz-Klimasystem elektromotorisch angetriebener Fahrzeuge. FAT-Schriftenreihe (233)

    Google Scholar 

  • Kopp G, Burkardt N, Majic N (2011) Leichtbaustrategien und Bauweisen. In: Henning F, Moeller E (eds) Handbuch Leichtbau: Methoden, Werkstoffe, Fertigung. Hanser, München, pp 57–76

    Google Scholar 

  • Leidhold R (2015) Elektrische Maschinen. In: Tschöke H (ed) Die Elektrifizierung des Antriebsstrangs: Basiswissen. Springer Fachmedien Wiesbaden GmbH, Wiesbaden, pp 25–35

    Google Scholar 

  • Mayyas AT, Qattawi A, Mayyas AR, Omar MA (2012) Life cycle assessment-based selection for a sustainable lightweight body-in-white design. Energy 39(1):412–425. doi:10.1016/j.energy.2011.12.033

    Article  Google Scholar 

  • Melnyk S, Sroufe RP, Calantone RJ (2003) Assessing the impact of environmental management systems on corporate and environmental performance. J Oper Manage 21(3):329–351. doi:10.1016/S0272-6963(02)00109-2

    Article  Google Scholar 

  • Mock P, German J, Bandivadekar A, Riemersma I (2012) Discrepancies between type-approval and “real-world” fuel-consumption and CO2 values: assessment for 2001–2011 European passenger cars. The International Council on Clean Transportation

    Google Scholar 

  • Neudorfer H, Binder A, Wicker N (2006) Analyse von unterschiedlichen Fahrzyklen für den Einsatz von Elektrofahrzeugen. Elektrotech Inftech 123(7–8):352–360. doi:10.1007/s00502-006-0363-x

    Article  Google Scholar 

  • Nicholson AL, Olivetti EA, Gregory JR, Field FR, Kirchain RE (2012) End-of-life LCA allocation methods: open loop recycling impacts on robustness of material selection decisions: 1–6. doi:10.1109/ISSST.2009.5156769

  • Niemann G, Höhn B, Winter H (2005) Maschinenelemente: Entwerfen, Berechnen und Gestalten im Maschinenbau; ein Lehr- und Arbeitsbuch, 4th edn. Springer, Berlin [u.a.]

    Google Scholar 

  • Nordelöf A, Messagie M, Tillman A, Ljunggren Söderman M, van Mierlo J (2014) Environmental impacts of hybrid, plug-in hybrid, and battery electric vehicles—what can we learn from life cycle assessment? Int J Life Cycle Assess 19(11):1866–1890. doi:10.1007/s11367-014-0788-0

    Article  Google Scholar 

  • Ohlendorf M (2006) Simulationsgestützte Planung und Bewertung von Demontagesystemen. Dissertation. Schriftenreihe des Instituts für Werkzeugmaschinen und Fertigungstechnik der TU Braunschweig. Vulkan-Verl., Essen

    Google Scholar 

  • Otto HE, Mueller KG, Kimura F (2003a) Efficient information visualization in LCA: approach and examples. Int J Life Cycle Assess 8(5):259–265. doi:10.1007/BF02978917

  • Otto HE, Mueller, Karl, G., Kimura F (2003b) Efficient information visualization in LCA: introduction and overview. Int J Life Cycle Assess 8(4). doi:10.1065/lca2003.06.121

  • Pischinger F, Adomeit P (2013) Grundlagen der Motorentechnik. In: Braess H, Seiffert U (eds) Vieweg-Handbuch Kraftfahrzeugtechnik, 7th edn. Springer Vieweg, Wiesbaden, pp 222–295

    Google Scholar 

  • Roesky O, Bodmann M, Mummel J, Kurrat M, Köhler J (2015) Impact of losses on the charging strategy of electric vehicles. In: Hybrid and electric vehicles: 12th symposium, Stadthalle Braunschweig, 24–25 Feb 2015. ITS Niedersachsen, Braunschweig

    Google Scholar 

  • Samuel S, Austin L, Morrey D (2002) Automotive test drive cycles for emission measurement and real-world emission levels-a review. Proc Inst Mech Eng Part D J Automobile Eng 216(7):555–564. doi:10.1243/095440702760178587

    Article  Google Scholar 

  • Sato Y, Ishikawa S, Okubo T, Abe M, Tamai K (2011) Power from within. SAE Int Veh Electrification 2(1)

    Google Scholar 

  • Sauer DU, Kampker A, Deutskens C, Heimes HH (2013) Batteriesysteme und deren Steuerung. In: Kampker A, Vallée D, Schnettler A (eds) Elektromobilität: Grundlagen einer Zukunftstechnologie. Springer Vieweg, Berlin, pp 295–314

    Google Scholar 

  • Schäper C, Sauer DU (2015) Batteriesystemtechnik. In: Tschöke H (ed) Die Elektrifizierung des Antriebsstrangs: Basiswissen. Springer Fachmedien Wiesbaden GmbH, Wiesbaden, pp 85–92

    Google Scholar 

  • Schuh G, Korthals K, Backs M (2013) Environmental impact of body lightweight design in the operating phase of electric vehicles. In: Nee AYC, Song B, Ong S (eds) Re-engineering manufacturing for sustainability: proceedings of the 20th CIRP international conference on life cycle engineering, Singapore, 17–19 Apr 2013. Springer, Singapore, New York

    Google Scholar 

  • Scrosati B, Garche J (2010) Lithium batteries: status, prospects and future. J Power Sources 195(9):2419–2430. doi:10.1016/j.jpowsour.2009.11.048

    Article  Google Scholar 

  • Stan C (2012) Alternative Antriebe für Automobile: Hybridsysteme, Brennstoffzellen, alternative Energieträger, 3. Aufl. 2012. SpringerLink: Bücher. Springer, Berlin

    Google Scholar 

  • Strupp C, Lemke N (2009) Klimatische Daten und Pkw-Nutzung: Klimadaten und Nutzungsverhalten zu Auslegung, Versuch und Simulation an Kraftfahrzeug-Kälte-/Heizanlagen in Europa, USA, China und Indien. FAT-Schriftenreihe (224)

    Google Scholar 

  • Thinkstep (2015) Gabi database. www.gabi-software.com. Accessed 2 Oct 2015

  • Treffer F (2011) Entwicklung eines realisierbaren Recyclingkonzeptes für die Hochleistungsbatterien zukünftiger Elektrofahrzeuge: Lithium-Ionen Batterierecycling Initiative—LiBRi

    Google Scholar 

  • Umweltbundesamt (2015) Probas database. http://www.probas.umweltbundesamt.de. Accessed 2 Oct 2015

  • United Nations (2005) Uniform provisions concerning the approval of passenger cars: UNECE R 101. Accessed 25 Oct 2012

    Google Scholar 

  • United Nations Economic Commission for Europe (2014) UNECE adopts more accurate fuel efficiency and CO2 test for new cars. Geneva, Switzerland

    Google Scholar 

  • Volkswagen AG (2009) Der Passat: Umweltprädikat - Hintergrundbericht

    Google Scholar 

  • Volkswagen AG (2015a) Der Golf. http://www.volkswagen.de/de/models/golf_7.html. Accessed 27 Apr 2015

  • Volkswagen AG (2015b) Der Passat. http://www.volkswagen.de/de/models/passat.html. Accessed 27 Apr 2015

  • Wackernagel M, Rees WE (1996) Our ecological footprint: reducing human impact on the earth. New catalyst bioregional series, no. 9. New Society Publishers, Gabriola Island, BC

    Google Scholar 

  • Wallentowitz H, Freialdenhoven A (2011) Strategien zur Elektrifizierung des Antriebsstranges: Technologien, Märkte und Implikationen, 2., überarbeitete Auflage. Studium. Vieweg+Teubner Verlag/Springer Fachmedien Wiesbaden GmbH, Wiesbaden

    Google Scholar 

  • Weißbach W (2012) Werkstoffkunde: Strukturen, Eigenschaften, Prüfung; mit 248 Tabellen, 18., überarb. Aufl. Studium. Vieweg+Teubner, Wiesbaden

    Google Scholar 

  • Weidenmann K, Wanner A (2011) Werkstoffauswahl für den Leichtbau. In: Henning F, Moeller E (eds) Handbuch Leichtbau: Methoden, Werkstoffe, Fertigung. Hanser, München

    Google Scholar 

  • Woll T (2013) Verbrauch und Fahrleistung. In: Schütz T (ed) Hucho - Aerodynamik des Automobils: Strömungsmechanik, Wärmetechnik, Fahrdynamik, Komfort, 6., vollständig überarbeitete und erweiterte Auflage, pp 137–176

    Google Scholar 

  • World Commission on Environment and Development (1987) Our Common Future: Report of the World Commission on Environment and Development. Oxford University Press, New York, NY

    Google Scholar 

  • Zoboli R, Barbiroli G, Leoncini R, Mazzanti M, Montresor S (2000) Regulation and innovation in the area of end-of-life vehicles. European Commission, Institute for Prospective Technology Studies

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Egede, P. (2017). Electric Vehicles, Lightweight Design and Environmental Impacts. In: Environmental Assessment of Lightweight Electric Vehicles. Sustainable Production, Life Cycle Engineering and Management. Springer, Cham. https://doi.org/10.1007/978-3-319-40277-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40277-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40276-5

  • Online ISBN: 978-3-319-40277-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics