Skip to main content

UIA: A Uniform Integrated Advection Algorithm for Steady and Unsteady Piecewise Linear Flow Field on Structured and Unstructured Grids

  • Conference paper
  • First Online:
Book cover E-Learning and Games (Edutainment 2016)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9654))

  • 1542 Accesses

Abstract

Integration-Based geometric method is widely used in vector field visualization. In order to improve visualization efficiency based on integration advection, we propose a unified advection algorithm on steady and unsteady vector field according to common piecewise linear field data set analysis. The algorithm interpolates along spatial and temporal direction using cell gradient based method combined with advection process of 4th-order Runge-Kutta algorithm, which transforms multi-step advection into single-step advection. The algorithm can dramatically reduce computational load, and is applicable on any grid type and cell-centered/cell-vertexed data structure. The experiments are per- formed on steady/unsteady vector fields on 2-dimensional cell-centered unstructured grids and 3-dimensional cell-vertexed format grids. The result shows that the proposed algorithm can significantly improve advection efficiency and reduce visualization computational time compared with 4th-order Runge-Kutta.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen, W., Shen, Z., Tao, Y.: Data Visualization. Publishing House of Electronics Industry, Beijing (2013)

    Google Scholar 

  2. Mcloughlin, T., Laramee, R.S., Peikert, R., et al.: Over two decades of integration- based, geometric flow visualization. Comput. Graph. Forum 29(6), 1807–1829 (2010)

    Article  Google Scholar 

  3. Edmunds, M., Laramee, R.S., Chen, G., et al.: Surface-based flow visualization. Comput. Graph. 36(8), 974–990 (2012)

    Article  Google Scholar 

  4. Laramee, R.S., Hauser, H., Doleisch, H., et al.: The state of the art in flow visualization dense and texture-based techniques. Comput. Graph. Forum 23(2), 203–221 (2004)

    Article  Google Scholar 

  5. Post, F.H., Vrolijk, B., Hauser, H., et al.: The state of the art in flow visualisation: feature extraction and tracking. Comput. Graph. Forum 22(4), 775–792 (2003)

    Article  Google Scholar 

  6. Pobitzer, A., Peikert, R., Fuchs, R., et al.: The state of the art in topology-based visualization of unsteady flow. Comput. Graph. Forum 30(6), 1789–1811 (2011)

    Article  Google Scholar 

  7. Murray, L.: GPU acceleration of Runge-Kutta integrators. IEEE Trans. Parallel Distrib. Syst. 23(1), 94–101 (2012)

    Article  Google Scholar 

  8. Camp, D., Krishnan, H., Pugmire, D., et al.: GPU acceleration of particle advection workloads in a parallel, distributed memory setting. In: Eurographics Symposium on Parallel Graphics and Visualization, pp. 1–8. The Eurographics Association (2013)

    Google Scholar 

  9. Nouanesengsy, B., Lee, T.-Y., Shen, H.-W.: Load-balanced parallel streamline generation on large scale vector fields. IEEE Trans. Vis. Comput. Graph. 17(12), 1785–1794 (2011)

    Article  Google Scholar 

  10. David, C., Christoph, G., Hank, C., et al.: Streamline integration using MPI- hybrid parallelism on a large multicore architecture. IEEE Trans. Vis. Comput. Graph. 17(11), 1702–1713 (2011)

    Article  Google Scholar 

  11. Peterka, T., Ross, R., Nounesengsy, B., et al.: A study of parallel particle tracing for steady-state and time-varying flow fields. In: Proceedings of the 2011 IEEE International Parallel and Distributed Processing Symposium (2011)

    Google Scholar 

  12. Ueng, S.K., Sikorski, K., Ma, K.L.: Fast algorithms for visualizing fluid motion in steady flow on unstructured grids. In: IEEE Visualization Conference, pp. 313–320. IEEE Computer Society (1999)

    Google Scholar 

  13. Ueng, S.K., Sikorski, K., Ma, K.L.: E client streamline, streamribbon, and stream- tube constructions on unstructured grids. IEEE Trans. Vis. Comput. Graph. 2(2), 100–110 (1996)

    Article  Google Scholar 

  14. Wang, W., Wang, W., Li, S.: Batch advection for the piecewise linear vector field on implicial grids. Comput. Graph. 54, 75–83 (2016)

    Article  Google Scholar 

  15. Shadden, S.C., Lekienb, F., Marsdena, J.E.: Definition and properties of Lagrangian coherent structures from finite-time Lyapunov exponents in two- dimensional aperiodic flows. Phys. D 212(34), 271–304 (2005)

    Article  MathSciNet  Google Scholar 

  16. Shi, K., Seidel, H.-P., Theisel, H., et al.: Visualizing transport structures of time- dependent flow fields. IEEE Comput. Graph. Appl. 28(5), 24–36 (2008)

    Article  Google Scholar 

  17. Haller, G.: Langrangian coherent structures. Annual Rev. Fluid Mech. 47(1), 137–162 (2015)

    Article  MathSciNet  Google Scholar 

  18. Barth, T.J., Jespersen, D.C.: The design and application of upwind schemes on unstructured meshes. Aiaa J. 0366(13), 1–13 (1989)

    Google Scholar 

  19. Jameson, A., Schmidt, W., Turkel, E.: Numerical solution of the Euler equations by finite volume methods using Runge-Kutta time stepping schemes. Aiaa 1259(11), 20040–24325 (1981)

    Google Scholar 

  20. Anderson, J.D.: Computational Fluid Dynamics. China Machine Press, China (2007)

    Google Scholar 

  21. Ma, Q., Xu, H., Zeng, L., et al.: Direct raycasting of unstructured cell-centered data by discontinuity Roe-average computation. Vis. Comput. 26(6), 1049–1059 (2010)

    Article  Google Scholar 

  22. AIAA: Improved reconstruction schemes for the Navier-Stokes equations on un- structured meshes. In: Proceedings of the AIAA Paper (1994)

    Google Scholar 

  23. Hearn, D., Baker, M.: Computer Graphics. Publishing House of Electronics Industry, Beijing (1998)

    MATH  Google Scholar 

  24. Coulliette, C., Wiggins, S.: Intergyre transport in a wind-driven, quasigeostrophic double gyre: an application of lobe dynamics. Nonlinear Process. Geophys. 7(1/2), 59–85 (1999)

    Article  Google Scholar 

  25. Chad, C., Francois, L., Paduan, J.D., et al.: Optimal pollution mitigation in Monterey Bay based on coastal radar data and nonlinear dynamics. Environ. Sci. Technol. 41(18), 6562–6572 (2007)

    Article  Google Scholar 

  26. Kundu, P.K., Cohen, I.M.: Fluid Mechanics. Academic Press, New York (2004)

    Google Scholar 

  27. Leung, S.Y.: An Eulerian approach for computing the finite time Lyapunov exponent. J. Comput. Phys. 230(9), 3500–3524 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Haller, G.: Distinguished material surfaces and coherent structures in three- dimensional fluid flows. Phys. D 149(4), 248–277 (2001)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work is supported by Chinese 973 Program (2015CB755604) and the National Science Foundation of China (61202335).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fang Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Wang, F., Liu, Y., Zhao, D., Deng, L., Li, S. (2016). UIA: A Uniform Integrated Advection Algorithm for Steady and Unsteady Piecewise Linear Flow Field on Structured and Unstructured Grids. In: El Rhalibi, A., Tian, F., Pan, Z., Liu, B. (eds) E-Learning and Games. Edutainment 2016. Lecture Notes in Computer Science(), vol 9654. Springer, Cham. https://doi.org/10.1007/978-3-319-40259-8_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40259-8_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40258-1

  • Online ISBN: 978-3-319-40259-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics