Skip to main content

Modeling for Nonlinear Vibrational Response of Mechanical Systems

  • Chapter
  • First Online:
The Art of Modeling Mechanical Systems

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 570))

Abstract

This chapter describes the modeling of mechanical systems in order to describe their nonlinear vibratory response, focusing on free vibration and frequency response near resonance. Some general thoughts about modeling are offered first, along with some archetypical models for nonlinear vibration, motivated by physical examples. We focus on considerations related to the inclusion of nonlinearities in system models and how nonlinearity affects the ability of a model to describe system response. Methods for analyzing nonlinear vibration systems are not emphasized, and only the minimum tools required to demonstrate the results of interest are introduced. Models with one and two modes with polynomial nonlinearities are considered, since these offer descriptions of generic behaviors that are quite common and qualitatively distinct from linear system response. Sample physical systems that are used to demonstrate the main ideas include the simple pendulum, transverse vibrations of beams, capacitively driven micro-systems, the spherical pendulum, and a spring-pendulum system. The chapter closes with some general thoughts about nonlinear system modeling and its use in design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dyson, F. (2004). A meeting with Enrico Fermi. Nature, 427(6972), 297–297.

    Google Scholar 

  2. Albert, E. http://quoteinvestigator.com/2011/05/13/einstein-simple/.

  3. David, K. (1987). Campbell. Nonlinear science. Los Alamos. Science, 15, 218–262.

    Google Scholar 

  4. Strogatz, S. H. (2014). Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and engineering. Boulder: Westview press.

    MATH  Google Scholar 

  5. Nayfeh, A. H., & Mook, D. T. (2008). Nonlinear oscillations. New York: Wiley.

    MATH  Google Scholar 

  6. Nayfeh, A. H. (2008). Perturbation methods. New York: Wiley.

    Google Scholar 

  7. Guckenheimer, J., & Holmes, P. (1983). Nonlinear oscillations, dynamical systems, and bifurcations of vector fields (Vol. 42). New York: Springer.

    Book  MATH  Google Scholar 

  8. Michael, J., Thompson, T., & Stewart, H. B. (2002). Nonlinear dynamics and chaos. New York: Wiley.

    MATH  Google Scholar 

  9. Hagedorn, P. (1981). Nonlinear oscillations (p. 298). Oxford and New York: Clarendon Press. Translatio, 1.

    Google Scholar 

  10. Bogolyubov, N. N., & Mitropolskii, Y. A. (1955). Asymptotic methods in the theory of non-linear oscillations. DTIC Document: Technical report.

    Google Scholar 

  11. Schmidt, G., & Tondl, A. (1986). Nonlinear vibration. Cambridge: Cambridge University Press.

    Google Scholar 

  12. Stoker, J. J. (1950). Nonlinear vibrations in mechanical and electrical systems (Vol. 2). New York: Interscience Publishers.

    MATH  Google Scholar 

  13. Fidlin, A. (2005). Nonlinear oscillations in mechanical engineering. Berlin: Springer.

    Google Scholar 

  14. Moon, F. C. (2008). Chaotic and Fractal Dynamics: Introduction for Applied Scientists and Engineers. New York: Wiley.

    Google Scholar 

  15. Virgin, L. N. (2000). Introduction to experimental nonlinear dynamics: a case study in mechanical vibration. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  16. Baker, G. L., & Blackburn, J. A. (2005). The pendulum. A case study in physics. Applied Mathematical Computation, 10:12.

    Google Scholar 

  17. Ron, L., & Cross, M. C. (2008). Nonlinear dynamics of nanomechanical and micromechanical resonators. Review of non-linear dynamics and complexity, 1, 1–52.

    MATH  Google Scholar 

  18. Meirovitch, L. (2010). Methods of analytical dynamics. North Chelmsford: Courier Corporation.

    MATH  Google Scholar 

  19. Rhoads, J. F., Shaw, S. W., & Turner, K. L. (2010). Nonlinear dynamics and its applications in micro-and nanoresonators. Journal of Dynamic Systems, Measurement, and Control, 132(3), 034001.

    Article  Google Scholar 

  20. Lu, M. S.-C., & Fedder, G. K., (2004). Position control of parallel-plate microactuators for probe-based data storage. Journal of Microelectromechanical Systems, 13(5), 759–769.

    Google Scholar 

  21. Lemkin, M. (2001). MEMS comb-finger actuator, August 31 2001. US Patent App. 09/944,395.

    Google Scholar 

  22. Kaiser, W.J., Kenny, T.W., Reynolds, J.K., Van Zandt, T.R., & Waltman, S.B. (1983). Methods and apparatus for improving sensor performance, May 18 1993. US Patent 5,211,051.

    Google Scholar 

  23. Rhoads, J. F., Shaw, S. W., Turner, K. L., Moehlis, J., DeMartini, B. E., & Zhang, W. (2006). Generalized parametric resonance in electrostatically actuated microelectromechanical oscillators. Journal of Sound and Vibration, 296(4), 797–829.

    Article  Google Scholar 

  24. Rhoads, J. F., Shaw, S. W., & Turner, K. L. (2006). The nonlinear response of resonant microbeam systems with purely-parametric electrostatic actuation. Journal of Micromechanics and Microengineering, 16(5), 890.

    Article  Google Scholar 

  25. Batra, R. C., Porfiri, M., & Spinello, D. (2007). Review of modeling electrostatically actuated microelectromechanical systems. Smart Materials and Structures, 16(6), R23.

    Article  Google Scholar 

  26. Nayfeh, A. H., Younis, M. I., & Abdel-Rahman, E. M. (2007). Dynamic pull-in phenomenon in MEMS resonators. Nonlinear dynamics, 48(1–2), 153–163.

    Article  MATH  Google Scholar 

  27. Alsaleem, F. M., Younis, M., & Ruzziconi, L., et al. (2010). An experimental and theoretical investigation of dynamic pull-in in MEMS resonators actuated electrostatically. Journal of Microelectromechanical Systems, 19(4), 794–806.

    Google Scholar 

  28. Meirovitch, L. (1997). Principles and techniques of vibrations (Vol. 1). New Jersey: Prentice Hall.

    Google Scholar 

  29. Polunin, P. M., Yang, Y., Dykman, M. I., Kenny, T. W., & Shaw, S. W. (2016). Independent characterization of mechanical and electrostatic nonlinearities in capacitiveMEMS resonators. near-final version complete.

    Google Scholar 

  30. Yurke, B., Greywall, D. S., Pargellis, A. N., & Busch, P. A. (1995). Theory of amplifier-noise evasion in an oscillator employing a non-linear resonator. Physical Review A, 51(5), 4211.

    Article  Google Scholar 

  31. Kenig, E., Cross, M. C., Villanueva, L. G., Karabalin, R. B., Matheny, M. H., & Lifshitz, R., et al. (2012). Optimal operating points of oscillators using non-linear resonators. Physical Review E, 86(5), 056207.

    Google Scholar 

  32. Zaitsev, S., Shtempluck, O., Buks, E., & Gottlieb, O. (2012). Nonlinear damping in a micromechanical oscillator. Nonlinear Dynamics, 67(1), 859–883.

    Google Scholar 

  33. Polunin, P. M., Yang, Y., Dykman, M. I., Kenny, T. W., & Shaw, S. W. (2016). Characterization of MEMS resonator nonlinearities using the ringdown response. Journal of Microelectromechanical Systems, 25(2), 297–303.

    Google Scholar 

  34. Iakubovich, V. A., & Starzhinskiĭ, V. M. (1975). Linear differential equations with periodic coefficients, volume 2. New York: Wiley.

    Google Scholar 

  35. Erugin, N. P., Bellman, R., & Technica, S.(1966). Linear systems of ordinary differential equations: with periodic and quasi-periodic coefficients, vol. 28. New York: Academic Press.

    Google Scholar 

  36. Cesari, L. (2012). Asymptotic behavior and stability problems in ordinary differential equations, vol. 16. Berlin: Springer.

    Google Scholar 

  37. Danzl, P., & Moehlis, J. (2010). Weakly coupled parametrically forced oscillator networks: existence, stability, and symmetry of solutions. Nonlinear Dynamics, 59(4), 661–680.

    Google Scholar 

  38. Shoshani, O., & Shaw, S. W. (2016). Generalized parametric resonance. SIAM Journal on Applied Dynamical Systems, 15(2), 767–788.

    Google Scholar 

  39. Rugar, D., & Grütter, P. (1991). Mechanical parametric amplification and thermomechanical noise squeezing. Physical Review Letters, 67(6), 699.

    Article  Google Scholar 

  40. Kumar, V., Miller, J. K., & Rhoads, J. F. (2011). Non-linear parametric amplification and attenuation in a base-excited cantilever beam. Journal of Sound and Vibration, 330(22), 5401–5409.

    Google Scholar 

  41. Rhoads, J. F., & Shaw, S. W. (2014). The impact of non-linearity on degenerate parametric amplifiers. Applied Physics Letters, 96(23), 234101.

    Google Scholar 

  42. Rhoads, J. W., Miller, N. J., Shaw, S. W., & Feeny, B. F. (2008). Mechanical domain parametric amplification. Journal of Vibration and Acoustics, 130(6), 061006.

    Google Scholar 

  43. Turner, K. L., Miller, S. A., Hartwell, P. J., MacDonald, N. C., Strogatz, S. H., & Adams, S. G. (1998). Five parametric resonances in a microelectromechanical system. Nature, 396(6707), 149–152.

    Google Scholar 

  44. Caughey, T. K., & Okelly, M. E. J. (1965). Classical normal modes in damped linear dynamic systems. Journal of Applied Mechanics, 32(3), 583–588.

    Google Scholar 

  45. Nayfeh, A. H. (2000). Nonlinear interactions. New York: Wiley.

    Google Scholar 

  46. Tondl, A. (2000). Autoparametric resonance in mechanical systems. Cambridge: Cambridge University Press.

    Google Scholar 

  47. Sethna, P. R. (1995). On averaged and normal form equations. Nonlinear Dynamics, 7(1), 1–10.

    MathSciNet  Google Scholar 

  48. John, W. (1962). Miles. Stability of forced oscillations of a spherical pendulum. Quarterly of Applied Mathematics, 20(1), 21–32.

    MathSciNet  Google Scholar 

  49. Miles, J. (1984). Resonant motion of a spherical pendulum. Physica D: Nonlinear Phenomena, 11(3), 309–323.

    Google Scholar 

  50. Gottlieb, O., & Habib, G. (2012). Nonlinear model-based estimation of quadratic and cubic damping mechanisms governing the dynamics of a chaotic spherical pendulum. Journal of Vibration and Control, 18(4), 536–547.

    Google Scholar 

  51. Johnson, J. M., & Bajaj, A. K. (1989). Amplitude modulated and chaotic dynamics in resonant motion of strings. Journal of Sound and Vibration, 128(1), 87–107.

    Google Scholar 

  52. O’Reilly, O., & Holmes, P. J. (1992). Non-linear, non-planar and non-periodic vibrations of a string. Journal of Sound and Vibration, 153(3), 413–435.

    Google Scholar 

  53. Nitzan, S. H., Zega, V., Li, M., Ahn, C. H., Corigliano, A., Kenny, T.W., & Horsley, D.A. (2015). Self-induced parametric amplification arising from non-linear elastic coupling in a micromechanical resonating disk gyroscope. Scientific reports, 5, 2015.

    Google Scholar 

  54. Sethna, P. R. (1965). Vibrations of dynamical systems with quadratic non-linearities. Journal of Applied Mechanics, 32(3), 576–582.

    Article  MathSciNet  Google Scholar 

  55. Sethna, P. R., & Bajaj, A.K. (1965). Bifurcations in dynamical systems with internal resonance. Journal of Applied Mechanics, 45(4), 895–902.

    Google Scholar 

  56. Miles, J. (1984). Resonantly forced motion of two quadratically coupled oscillators. Physica D: Nonlinear Phenomena, 13(1), 247–260.

    Google Scholar 

  57. Haddow, A. G., Barr, A. D. S., & Mook, D. T. (1984). Theoretical and experimental study of modal interaction in a two-degree-of-freedom structure. Journal of Sound and Vibration, 97(3), 451–473.

    Google Scholar 

  58. Froude, W. (1863). Remarks on mr. scott russells paper on rolling. Transactions of the Institute of Naval Research, 4:232–275.

    Google Scholar 

  59. Haxton, R.S., & Stephen Barr, A.D. (1972). The autoparametric vibration absorber. Journal of Manufacturing Science and Engineering, 94(1), 119–125.

    Google Scholar 

  60. Qalandar, K. R., Strachan, B. S., Gibson, B., Sharma, M., Ma, A., & Shaw, S. W., et al. (2014). Frequency division using a micromechanical resonance cascade. Applied Physics Letters, 105(24), 244103.

    Google Scholar 

  61. Vyas, A., Peroulis, D., & Bajaj, A.K. (2008). Dynamics of a nonlinear microresonator based on resonantly interacting flexural-torsional modes. Nonlinear Dynamics, 54(1-2):31–52.

    Google Scholar 

  62. Vyas, A., Peroulis, D., & Bajaj, A.K. (2009). A microresonator design based on nonlinear 1: 2 internal resonance in flexural structural modes. Microelectromechanical Systems, Journal of, 18(3):744–762.

    Google Scholar 

  63. Krstic, M., Kokotovic, P.V., & Kanellakopoulos, I. (1995) Nonlinear and adaptive control design. New York: Wiley.

    Google Scholar 

  64. Slotine, J.-J. E., & Weiping, L., et al. (1991). Applied nonlinear control (Vol. 199). New Jersey: Prentice-hall Englewood Cliffs.

    Google Scholar 

  65. Isidori, A. (1995). Nonlinear control systems. Berlin: Springer.

    Google Scholar 

  66. Khalil, H.K. (1996). Nonlinear systems, vol 3. New Jersey: Prentice hall.

    Google Scholar 

Download references

Acknowledgments

The lead author is grateful to the organizers of the CISM course on The Art of Modeling Mechanical Systems, in particular, Professor Freidrich Pfieffer, for inviting him to contribute to the lectures and to this volume. The authors are grateful to Professor Mark Dykman of Michigan State University for discussions that were particularly helpful in the preparation of this chapter. The authors’ current related work on nonlinear vibrations is supported by the US National Science Foundation under grants 1234067 and 1100260, by US ARO grant W911NF-12-1-0235, managed by Dr. Samuel Stanton, and by DARPA grant FA8650-13-1- 7301, Mesodynamic Architectures (MESO), managed by Dr. Daniel Green.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven W. Shaw .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 CISM International Centre for Mechanical Sciences

About this chapter

Cite this chapter

Shaw, S.W., Shoshani, O., Polunin, P.M. (2017). Modeling for Nonlinear Vibrational Response of Mechanical Systems. In: Pfeiffer, F., Bremer, H. (eds) The Art of Modeling Mechanical Systems. CISM International Centre for Mechanical Sciences, vol 570. Springer, Cham. https://doi.org/10.1007/978-3-319-40256-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40256-7_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40255-0

  • Online ISBN: 978-3-319-40256-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics