Modern Human-Robot Interaction in Smart Services and Value Co-creation

  • Vincent G. DuffyEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9745)


Modern work design must re-examine human-robot interaction and consider ways to effectively utilize emerging industrial capabilities such as collaborative robots and humanoids in the context of usability and our emerging service economy. By incorporating human aspects into technology-based efforts focused on value co-creation, it appears likely that inexpensive collaborative robots and humanoids can serve as integral parts of effective smart service systems designs. Ways to create value through such human-robot interaction are highlighted through recent research. A change in paradigm will need to occur to shift emphasis from ‘block the path’ to ‘design out’ when it comes to effective human-robot interaction in the workplace. It is apparent that smart service development will continue through multi-disciplinary initiatives that are human-centered. Usability and other human factors principles will continue to be central to successes. Organizational aspects that recognize fundamental relationships between job satisfaction and service quality can provide a foundation upon which capabilities of humanoids and collaborative robots can be leveraged in modern industrial and smart operations.


Value Co-creation Humanoid Human-Robot interaction Smart services Safety Operations management E-Services Usability User-centered design Digital human modeling 



The author wishes to express thanks and appreciation to the following colleagues for participation in related discussions: Mihaela Vorvoreanu, Yuehwern Yih, Barbara Almanza, Jan Schnorr, Rohit Kshirsagar, Debora Steffen, Debra Runshe, Amy Van Epps, Lindsey Payne, Dave Nelson, Chantal Levesque-Bristol, Steve Abel, Shimon Nof, Laura Lynn Henzl, Qing-Xing Qu, Le Zhang, Vivia Wen-Yu Chao, Shefali Rana, Apoorva A. Sulakhe, Nikhil A. Patwardhan and the students of IE556 Job Design in Spring 2016 including Shelley Stites, Kristina Tabar, Kevin Walker, Dina Verdin, William Gerwing, Jeongjoon Boo, Zimeng Liu, Zhanfei Jeffrey Shi, Abigail Tighe and Stephen Murray.


  1. 1.
    Dhillon, B.S.: Engineering Usability: Fundamentals, Applications Human Factors and Human Error. American Scientific Publishers Stevenson Ranch, California (2004)Google Scholar
  2. 2.
    Keinonen, T., Mattelmäki, T., Soosalu, M., Säde, S.: Usability Design Methods (1997)Google Scholar
  3. 3.
    Or, C.K.L., Duffy, V.G., Cheung, C.C.: Perception of safe robot idle time in virtual reality and real industrial environments. Int. J. Ind. Ergon. 39(5), 807–812 (2009)CrossRefGoogle Scholar
  4. 4.
    Goetsch, D.L.: Occupational Safety and Health for Technologists, Engineers and Managers, 8th edn. Pearson-Prentice Hall, Upper Saddle River (2015). Computers, Automation & Robots, Chap. 23, pp. 493–496Google Scholar
  5. 5.
    Zhang, L., Tong, H., Demirel, H.O., Duffy, V.G., Yih, Y., Bidassie, B.: A practical model of value co-creation in healthcare service. Procedia Manuf. 3, 200–207 (2015)CrossRefGoogle Scholar
  6. 6.
    Nof, S.Y., Ceroni, J., Jeong, W., Moghaddam, M.: Revolutionizing collaboration through e-Work, e-Business, and e-Service, vol. 2. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  7. 7.
    Porter, M.E., Heppelmann, J.E.: How Smart, Connected Products are Transforming Competition. Harvard Bus. Rev. 92(11), 11–64 (2014)Google Scholar
  8. 8.
    Zewge, A., Dittrich, Y., Bekele, R.: Adapting participatory design to design information system with rural ethiopian community. In: AFRICON 2015, pp. 1–5. IEEE (2015)Google Scholar
  9. 9.
    Medina-Borja, A.: Editorial column—smart things as service providers: a call for convergence of disciplines to build a research agenda for the service systems of the future. Serv. Sci. 7(1), ii–v (2015)CrossRefGoogle Scholar
  10. 10.
    Ardito, C., Buono, P., Caivano, D., Costabile, M.F., Lanzilotti, R., Dittrich, Y.: Human-centered design in industry: lessons from the trenches. Computer 12, 86–89 (2014)CrossRefGoogle Scholar
  11. 11.
    Schneider, B., Hanges, P.J., Smith, D.B., Salvaggio, A.N.: Which comes first: employee attitudes or organizational financial and market performance? J. Appl. Psychol. 88(5), 836–851 (2003)CrossRefGoogle Scholar
  12. 12.
    Hair Jr., J.F., Wolfinbarger, M., Money, A.H., Samouel, P., Page, M.J.: Essentials of Business Research Methods. Routledge, New York (2016)Google Scholar
  13. 13.
    Corporate Leadership Council: Linking Employee Satisfaction with Productivity, Performance and Customer Satisfaction, pp. 1–6 (2003)., Accessed 1 Oct 2016
  14. 14.
    Parker, D.: Service Operations Management: The Total Experience. Edward Elgar Publishing, Northampton (2012)Google Scholar
  15. 15.
    Duffy, V.G.: Modified virtual build methodology for computer-aided ergonomics and safety. Hum. Factors Ergon. Manuf. Serv. Ind. 17(5), 413–422 (2007)CrossRefGoogle Scholar
  16. 16.
    Demirel, H.O., Duffy, V.G.: Digital human modeling for product lifecycle management. In: Duffy, V.G. (ed.) HCII 2007 and DHM 2007. LNCS, vol. 4561, pp. 372–381. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  17. 17.
    Lingard, H.: The effect of first aid training on objective safety behaviour in australian small business construction firms. Constr. Manage. Econ. 19(6), 611–618 (2001)CrossRefGoogle Scholar
  18. 18.
    Lee, B.-C., Duffy, V.G.: The effects of task interruption on human performance: a study of the systematic classification of human behavior and interruption frequency. Hum. Factors Ergon. Manuf. Serv. Ind. 25(2), 137–152 (2015)CrossRefGoogle Scholar
  19. 19.
    Lusch, R., Vargo, S., O’Brien, M.: Competing through service: insights from service-dominant logic. J. Retail. 83, 5–18 (2006)CrossRefGoogle Scholar
  20. 20.
    Nelson, G., Saunders, A., Neville, N., Swilling, B., Bondaryk, J., Billings, D., Lee, C., Playter, R., Raibert, M.: PETMAN: A humanoid robot for testing chemical protective clothing. J. Robot. Soc. Jpn. 30(4), 372–377 (2012). 日本ロボット学会誌CrossRefGoogle Scholar
  21. 21.
    C2 Sense (2015). Accessed 10 Oct 2015
  22. 22.
    Serpell, J.A.: Having our dogs and eating them too: why animals are a social issue. J. Soc. Issues 65(3), 633–644 (2009)CrossRefGoogle Scholar
  23. 23.
    Raibert, M.: Dynamic legged robots for rough terrain. In: 2010 10th IEEE-RAS International Conference on Humanoid Robots (Humanoids), p. 1. IEEE (2010)Google Scholar
  24. 24.
    Nass, C., Fogg, B.J., Moon, Y.: Can computers be teammates? Int. J. Hum Comput Stud. 45(6), 669–678 (1996)CrossRefGoogle Scholar
  25. 25.
    Mishra, P.: Affective feedback from computers and its effect on perceived ability and affect: a test of the computers as social actor hypothesis. J. Educ. Multimedia Hypermedia 15(1), 107–131 (2006)Google Scholar
  26. 26.
    Al Moubayed, S., Beskow, J., Bollepalli, B., Gustafson, J., Hussen-Abdelaziz, A., Johansson, M., Koutsombogera, M., et al.: Human-robot collaborative tutoring using multiparty multimodal spoken dialogue. In: Proceedings of the 2014 ACM/IEEE International Conference on Human-Robot Interaction, pp. 112–113. ACM (2014)Google Scholar
  27. 27.
    Al Moubayed, S., Beskow, J., Beskow, J., Bollepalli, B., Hussen-Abdelaziz, A., Johansson, M., Koutsombogera, M.: Tutoring robots. In: Lopes, J.D., et al. (eds.). IFIP, vol. 425, pp. 80–113. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  28. 28.
    Cassell, J.: Embodied Conversational Agents. MIT Press, Cambridge (2009)Google Scholar
  29. 29.
    NSF PFI:BIC Adaptive Robotic Nursing Assistants for Physical Tasks in Hospital Environments, Division of Industrial Innovation & Partnerships, awarded to Popa, D., Wiesman, R., Mor, A., Shin, J., Behan, D. National Science Foundation, Washington, D.C. (2015). (retrieved 3/15/2016)
  30. 30.
    Oborn, E., Barrett, M., Darzi, A.: Robots and service innovation in health care. J. Health Serv. Res. Policy 16(1), 46–50 (2011)CrossRefGoogle Scholar
  31. 31.
    Shi, C., Shiomi, M., Kanda, T., Ishiguro, H., Hagita, N.: Measuring communication participation to initiate conversation in human-robot interaction. Int. J. Social Robot. 7(5), 889–910 (2015)CrossRefGoogle Scholar
  32. 32.
    Shiomi, M., Iio, T., Kamei, K., Sharma, C., Hagita, N.: Effectiveness of social behaviors for autonomous wheelchair robot to support elderly people in Japan. PLoS ONE 10(5), e0128031 (2015)CrossRefGoogle Scholar
  33. 33.
    Leister, W., Tjøstheim, I., Joryd, G., Schulz, T.: Towards assessing visitor engagement in science centres and museums. In: Proceedings of the PESARO, pp. 21–27 (2015)Google Scholar
  34. 34.
    Partarakis, N., Zidianakis, E., Antona, M., Stephanidis, C.: Art and coffee in the museum. In: Streitz, N., Markopoulos, P. (eds.) DAPI 2015. LNCS, vol. 9189, pp. 370–381. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  35. 35.
    Taylor, J.A., Lacovara, A.V., Smith, G.S., Pandian, R., Lehto, M.: Nearmiss narratives from the fire service: a bayesian analysis. Accid. Anal. Prev. 62, 119–129 (2014)CrossRefGoogle Scholar
  36. 36.
    Terzis, V., Moridis, C.N., Economides, A.A.: Measuring instant emotions based on facial expressions during computer-based assessment. Pers. Ubiquit. Comput. 17(1), 43–52 (2013)CrossRefGoogle Scholar
  37. 37.
    Nielsen, J., Pernice, K.: Eyetracking Web Usability, pp. 11–13. Pearson Education & New Riders Press, Berkeley, California (2010)Google Scholar
  38. 38.
    Sanchez, A., Vazquez, C., Marker, C., LeMoult, J., Joormann, J.: Attentional disengagement predicts stress recovery in depression: an eye-tracking study. J. Abnorm. Psychol. 122(2), 303–313 (2013)CrossRefGoogle Scholar
  39. 39.
    Graham, D.J., Orquin, J.L., Visschers, V.H.M.: Eye tracking and nutrition label use: a review of the literature and recommendations for label enhancement. Food Policy 37(4), 378–382 (2012)CrossRefGoogle Scholar
  40. 40.
    Piqueras-Fiszman, B., Velasco, C., Salgado-Montejo, A., Spence, C.: Using combined eye tracking and word association in order to assess novel packaging solutions: a case study involving jam jars. Food Qual. Prefer. 28(1), 328–338 (2013)CrossRefGoogle Scholar
  41. 41.
    Qu, Q.-X., Zhang, L., Chao, W.-Y., Duffy, V.G.: User Experience Design Based on Eye-Tracking Technology: A Case Study on Smart Phone APPs. In: Duffy, V.G. (eds.) Applied Digital Human Modeling and Simulation. Springer (in press, 2016)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.School of Industrial Engineering, Agricultural & Biological EngineeringPurdue UniversityWest LafayetteUSA

Personalised recommendations