Skip to main content

Functional Restoration for Neurological Trauma: Current Therapies and Future Directions

  • Chapter
  • First Online:
Neurotrauma Management for the Severely Injured Polytrauma Patient

Abstract

Neuromodulation devices and surgical techniques are available to alleviate some sequela of neurological trauma. Many times posttraumatic epilepsy is controlled by medications. But when medications alone are unable to control posttraumatic epilepsy, surgical interventions including surgical resection of the epileptic focus or stimulation with the vagal nerve stimulator or the neuropace responsive neurostimulator can be helpful in gaining improved epilepsy control. Neurological trauma is also often associated with deficits in memory and cognition. There is some evidence from a limited number of case series that deep brain stimulation may hold promise in improvement in memory and cognition. Deep brain stimulation has also demonstrated limited efficacy on a case by case basis for the treatment of medically refractory depression, another frequent sequela of neurological trauma. Traumatic injury to the brain and spinal cord are associated with spasticity. When spasticity is severe and medically refractory, intrathecal baclofen pump therapy is effective in alleviating the symptoms. Spinal cord and brain stimulators may be helpful in the control of pain resulting from neurological injuries. Newer therapies including robotics and brain--machine interface technologies are in their early phases of development but may provide future therapeutic options as well. All of these techniques and technologies have the potential for restoring some degree of normal function following severe neurological trauma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rutland-Brown W, Langlois JA, Thomas KE, Xi YL. Incidence of traumatic brain injury in the United States, 2003. The Journal of head trauma rehabilitation. 2006;21(6):544–8.

    Article  PubMed  Google Scholar 

  2. Selassie AW, Zaloshnja E, Langlois JA, Miller T, Jones P, Steiner C. Incidence of long-term disability following traumatic brain injury hospitalization, United States, 2003. The Journal of head trauma rehabilitation. 2008;23(2):123–31.

    Article  PubMed  Google Scholar 

  3. Langlois JA, Rutland-Brown W, Wald MM. The epidemiology and impact of traumatic brain injury: a brief overview. The Journal of head trauma rehabilitation. 2006;21(5):375–8.

    Article  PubMed  Google Scholar 

  4. Consensus conference. Rehabilitation of persons with traumatic brain injury. NIH Consensus Development Panel on Rehabilitation of Persons With Traumatic Brain Injury. Jama. 1999;282(10):974–83.

    Google Scholar 

  5. Zaloshnja E, Miller T, Langlois JA, Selassie AW. Prevalence of long-term disability from traumatic brain injury in the civilian population of the United States, 2005. The Journal of head trauma rehabilitation. 2008;23(6):394–400.

    Article  PubMed  Google Scholar 

  6. Asikainen I, Kaste M, Sarna S. Early and late posttraumatic seizures in traumatic brain injury rehabilitation patients: brain injury factors causing late seizures and influence of seizures on long-term outcome. Epilepsia. 1999;40(5):584–9.

    Article  CAS  PubMed  Google Scholar 

  7. Englander J, Bushnik T, Duong TT, Cifu DX, Zafonte R, Wright J, et al. Analyzing risk factors for late posttraumatic seizures: a prospective, multicenter investigation. Arch Phys Med Rehabil. 2003;84(3):365–73.

    Article  PubMed  Google Scholar 

  8. Annegers JF, Hauser WA, Coan SP, Rocca WA. A population-based study of seizures after traumatic brain injuries. N Engl J Med. 1998;338(1):20–4.

    Article  CAS  PubMed  Google Scholar 

  9. Salazar AM, Jabbari B, Vance SC, Grafman J, Amin D, Dillon JD. Epilepsy after penetrating head injury. I. Clinical correlates: a report of the Vietnam Head Injury Study. Neurology. 1985;35(10):1406–14.

    Article  CAS  PubMed  Google Scholar 

  10. Chen LL, Baca CB, Choe J, Chen JW, Ayad ME, Cheng EM. Posttraumatic epilepsy in Operation Enduring Freedom/Operation Iraqi Freedom veterans. Mil Med. 2014;179(5):492–6.

    Article  PubMed  Google Scholar 

  11. Brown AW, Moessner AM, Mandrekar J, Diehl NN, Leibson CL, Malec JF. A survey of very-long-term outcomes after traumatic brain injury among members of a population-based incident cohort. J Neurotrauma. 2011;28(2):167–76.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Rapoport M, McCauley S, Levin H, Song J, Feinstein A. The role of injury severity in neurobehavioral outcome 3 months after traumatic brain injury. Neuropsychiatry, neuropsychology, and behavioral neurology. 2002;15(2):123–32.

    PubMed  Google Scholar 

  13. Jamora CW, Young A, Ruff RM. Comparison of subjective cognitive complaints with neuropsychological tests in individuals with mild vs more severe traumatic brain injuries. Brain Inj. 2012;26(1):36–47.

    Article  PubMed  Google Scholar 

  14. Satz P, Zaucha K, Forney DL, McCleary C, Asarnow RF, Light R, et al. Neuropsychological, psychosocial and vocational correlates of the Glasgow Outcome Scale at 6 months post-injury: a study of moderate to severe traumatic brain injury patients. Brain Inj. 1998;12(7):555–67.

    Article  CAS  PubMed  Google Scholar 

  15. Lee BB, Cripps RA, Fitzharris M, Wing PC. The global map for traumatic spinal cord injury epidemiology: update 2011, global incidence rate. Spinal cord. 2014;52(2):110–6.

    Article  CAS  PubMed  Google Scholar 

  16. Anderson KD. Targeting recovery: priorities of the spinal cord-injured population. J Neurotrauma. 2004;21(10):1371–83.

    Article  PubMed  Google Scholar 

  17. Skold C, Levi R, Seiger A. Spasticity after traumatic spinal cord injury: nature, severity, and location. Arch Phys Med Rehabil. 1999;80(12):1548–57.

    Article  CAS  PubMed  Google Scholar 

  18. Maynard FM, Karunas RS, Waring WP 3rd. Epidemiology of spasticity following traumatic spinal cord injury. Arch Phys Med Rehabil. 1990;71(8):566–9.

    CAS  PubMed  Google Scholar 

  19. Noble J, Munro CA, Prasad VS, Midha R. Analysis of upper and lower extremity peripheral nerve injuries in a population of patients with multiple injuries. The Journal of trauma. 1998;45(1):116–22.

    Article  CAS  PubMed  Google Scholar 

  20. Taylor CA, Braza D, Rice JB, Dillingham T. The incidence of peripheral nerve injury in extremity trauma. American journal of physical medicine & rehabilitation/ Association of Academic Physiatrists. 2008;87(5):381–5.

    Article  Google Scholar 

  21. de Mos M, de Bruijn AG, Huygen FJ, Dieleman JP, Stricker BH, Sturkenboom MC. The incidence of complex regional pain syndrome: a population-based study. Pain. 2007;129(1–2):12–20.

    Article  PubMed  Google Scholar 

  22. Sandroni P, Benrud-Larson LM, McClelland RL, Low PA. Complex regional pain syndrome type I: incidence and prevalence in Olmsted county, a population-based study. Pain. 2003;103(1–2):199–207.

    Article  PubMed  Google Scholar 

  23. Liesemer K, Bratton SL, Zebrack CM, Brockmeyer D, Statler KD. Early post-traumatic seizures in moderate to severe pediatric traumatic brain injury: rates, risk factors, and clinical features. J Neurotrauma. 2011;28(5):755–62.

    Article  PubMed  Google Scholar 

  24. Arango JI, Deibert CP, Brown D, Bell M, Dvorchik I, Adelson PD. Posttraumatic seizures in children with severe traumatic brain injury. Childs Nerv Syst. 2012;28(11):1925–9.

    Article  PubMed  Google Scholar 

  25. Bushnik T, Englander J, Wright J, Kolakowsky-Hayner SA. Traumatic brain injury with and without late posttraumatic seizures: what are the impacts in the post-acute phase: a NIDRR Traumatic Brain Injury Model Systems study. The Journal of head trauma rehabilitation. 2012;27(6):E36–44.

    Article  PubMed  Google Scholar 

  26. Englander J, Bushnik T, Wright JM, Jamison L, Duong TT. Mortality in late post-traumatic seizures. J Neurotrauma. 2009;26(9):1471–7.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Chang BS, Lowenstein DH. Practice parameter: antiepileptic drug prophylaxis in severe traumatic brain injury: report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology. 2003;60(1):10–6.

    Article  PubMed  Google Scholar 

  28. Young B, Rapp RP, Norton JA, Haack D, Tibbs PA, Bean JR. Failure of prophylactically administered phenytoin to prevent late posttraumatic seizures. J Neurosurg. 1983;58(2):236–41.

    Article  CAS  PubMed  Google Scholar 

  29. Young B, Rapp RP, Norton JA, Haack D, Walsh JW. Failure of prophylactically administered phenytoin to prevent post-traumatic seizures in children. Child’s brain. 1983;10(3):185–92.

    CAS  PubMed  Google Scholar 

  30. Klein P, Herr D, Pearl PL, Natale J, Levine Z, Nogay C, et al. Results of phase II pharmacokinetic study of levetiracetam for prevention of post-traumatic epilepsy. Epilepsy Behav. 2012;24(4):457–61.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Klein P, Herr D, Pearl PL, Natale J, Levine Z, Nogay C, et al. Results of phase 2 safety and feasibility study of treatment with levetiracetam for prevention of posttraumatic epilepsy. Arch Neurol. 2012;69(10):1290–5.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Pearl PL, McCarter R, McGavin CL, Yu Y, Sandoval F, Trzcinski S, et al. Results of phase II levetiracetam trial following acute head injury in children at risk for posttraumatic epilepsy. Epilepsia. 2013;54(9):e135–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hakimian S, Kershenovich A, Miller JW, Ojemann JG, Hebb AO, D’Ambrosio R, et al. Long-term outcome of extratemporal resection in posttraumatic epilepsy. Neurosurg Focus. 2012;32(3):E10.

    Article  PubMed  Google Scholar 

  34. Gupta PK, Sayed N, Ding K, Agostini MA, Van Ness PC, Yablon S, et al. Subtypes of post-traumatic epilepsy: clinical, electrophysiological, and imaging features. J Neurotrauma. 2014;31(16):1439–43.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Spencer SS, Berg AT, Vickrey BG, Sperling MR, Bazil CW, Shinnar S, et al. Initial outcomes in the Multicenter Study of Epilepsy Surgery. Neurology. 2003;61(12):1680–5.

    Article  CAS  PubMed  Google Scholar 

  36. Spencer S, Huh L. Outcomes of epilepsy surgery in adults and children. Lancet Neurol. 2008;7(6):525–37.

    Article  PubMed  Google Scholar 

  37. Englot DJ, Chang EF, Auguste KI. Vagus nerve stimulation for epilepsy: a meta-analysis of efficacy and predictors of response. J Neurosurg. 2011;115(6):1248–55.

    Article  PubMed  Google Scholar 

  38. Englot DJ, Chang EF, Auguste KI. Efficacy of vagus nerve stimulation for epilepsy by patient age, epilepsy duration, and seizure type. Neurosurg Clin N Am. 2011;22(4):443–8, v.

    Google Scholar 

  39. Englot DJ, Rolston JD, Wang DD, Hassnain KH, Gordon CM, Chang EF. Efficacy of vagus nerve stimulation in posttraumatic versus nontraumatic epilepsy. J Neurosurg. 2012;117(5):970–7.

    Article  PubMed  Google Scholar 

  40. Heck CN, King-Stephens D, Massey AD, Nair DR, Jobst BC, Barkley GL, et al. Two-year seizure reduction in adults with medically intractable partial onset epilepsy treated with responsive neurostimulation: final results of the RNS System Pivotal trial. Epilepsia. 2014;55(3):432–41.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Fisher R, Salanova V, Witt T, Worth R, Henry T, Gross R, et al. Electrical stimulation of the anterior nucleus of thalamus for treatment of refractory epilepsy. Epilepsia. 2010;51(5):899–908.

    Article  PubMed  Google Scholar 

  42. Zhou L, Lin J, Lin J, Kui G, Zhang J, Yu Y. Neuroprotective effects of vagus nerve stimulation on traumatic brain injury. Neural regeneration research. 2014;9(17):1585–91.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Clough RW, Neese SL, Sherill LK, Tan AA, Duke A, Roosevelt RW, et al. Cortical edema in moderate fluid percussion brain injury is attenuated by vagus nerve stimulation. Neuroscience. 2007;147(2):286–93.

    Article  CAS  PubMed  Google Scholar 

  44. Lopez NE, Krzyzaniak MJ, Costantini TW, Putnam J, Hageny AM, Eliceiri B, et al. Vagal nerve stimulation decreases blood-brain barrier disruption after traumatic brain injury. The journal of trauma and acute care surgery. 2012;72(6):1562–6.

    Article  PubMed  Google Scholar 

  45. Neese SL, Sherill LK, Tan AA, Roosevelt RW, Browning RA, Smith DC, et al. Vagus nerve stimulation may protect GABAergic neurons following traumatic brain injury in rats: An immunocytochemical study. Brain Res. 2007;1128(1):157–63.

    Article  CAS  PubMed  Google Scholar 

  46. Smith DC, Tan AA, Duke A, Neese SL, Clough RW, Browning RA, et al. Recovery of function after vagus nerve stimulation initiated 24 hours after fluid percussion brain injury. J Neurotrauma. 2006;23(10):1549–60.

    Article  PubMed  Google Scholar 

  47. Pruitt DT, Schmid AN, Kim LJ, Abe CM, Trieu JL, Choua C, et al. Vagus Nerve Stimulation Delivered with Motor Training Enhances Recovery of Function after Traumatic Brain Injury. Journal of neurotrauma. 2015.

    Google Scholar 

  48. Smith DC, Modglin AA, Roosevelt RW, Neese SL, Jensen RA, Browning RA, et al. Electrical stimulation of the vagus nerve enhances cognitive and motor recovery following moderate fluid percussion injury in the rat. J Neurotrauma. 2005;22(12):1485–502.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Levin HS, Mattis S, Ruff RM, Eisenberg HM, Marshall LF, Tabaddor K, et al. Neurobehavioral outcome following minor head injury: a three-center study. J Neurosurg. 1987;66(2):234–43.

    Article  CAS  PubMed  Google Scholar 

  50. Millis SR, Rosenthal M, Novack TA, Sherer M, Nick TG, Kreutzer JS, et al. Long-term neuropsychological outcome after traumatic brain injury. The Journal of head trauma rehabilitation. 2001;16(4):343–55.

    Article  CAS  PubMed  Google Scholar 

  51. Dikmen SS, Corrigan JD, Levin HS, Machamer J, Stiers W, Weisskopf MG. Cognitive outcome following traumatic brain injury. The Journal of head trauma rehabilitation. 2009;24(6):430–8.

    Article  PubMed  Google Scholar 

  52. Foote KD, Okun MS. Ventralis intermedius plus ventralis oralis anterior and posterior deep brain stimulation for posttraumatic Holmes tremor: two leads may be better than one: technical note. Neurosurgery. 2005;56(2 Suppl):E445; discussion E.

    Google Scholar 

  53. Foote KD, Seignourel P, Fernandez HH, Romrell J, Whidden E, Jacobson C, et al. Dual electrode thalamic deep brain stimulation for the treatment of posttraumatic and multiple sclerosis tremor. Neurosurgery. 2006;58(4 Suppl 2):ONS-280-5; discussion ONS-5-6.

    Google Scholar 

  54. Lee DJ, Gurkoff GG, Izadi A, Seidl SE, Echeverri A, Melnik M, et al. Septohippocampal Neuromodulation Improves Cognition after Traumatic Brain Injury. Journal of neurotrauma. 2015.

    Google Scholar 

  55. Quinkert AW, Pfaff DW. Temporal patterns of deep brain stimulation generated with a true random number generator and the logistic equation: effects on CNS arousal in mice. Behav Brain Res. 2012;229(2):349–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Sweet JA, Eakin KC, Munyon CN, Miller JP. Improved learning and memory with theta-burst stimulation of the fornix in rat model of traumatic brain injury. Hippocampus. 2014;24(12):1592–600.

    Article  PubMed  Google Scholar 

  57. Lee DJ, Gurkoff GG, Izadi A, Berman RF, Ekstrom AD, Muizelaar JP, et al. Medial septal nucleus theta frequency deep brain stimulation improves spatial working memory after traumatic brain injury. J Neurotrauma. 2013;30(2):131–9.

    Article  PubMed  Google Scholar 

  58. Turnbull IM, McGeer PL, Beattie L, Calne D, Pate B. Stimulation of the basal nucleus of Meynert in senile dementia of Alzheimer’s type. A preliminary report. Appl Neurophysiol. 1985;48(1–6):216–21.

    CAS  PubMed  Google Scholar 

  59. Hamani C, McAndrews MP, Cohn M, Oh M, Zumsteg D, Shapiro CM, et al. Memory enhancement induced by hypothalamic/fornix deep brain stimulation. Ann Neurol. 2008;63(1):119–23.

    Article  PubMed  Google Scholar 

  60. Laxton AW, Tang-Wai DF, McAndrews MP, Zumsteg D, Wennberg R, Keren R, et al. A phase I trial of deep brain stimulation of memory circuits in Alzheimer’s disease. Ann Neurol. 2010;68(4):521–34.

    Article  CAS  PubMed  Google Scholar 

  61. Smith GS, Laxton AW, Tang-Wai DF, McAndrews MP, Diaconescu AO, Workman CI, et al. Increased cerebral metabolism after 1 year of deep brain stimulation in Alzheimer disease. Arch Neurol. 2012;69(9):1141–8.

    Article  PubMed  Google Scholar 

  62. Miller JP, Sweet JA, Bailey CM, Munyon CN, Luders HO, Fastenau PS. Visual-spatial memory may be enhanced with theta burst deep brain stimulation of the fornix: a preliminary investigation with four cases. Brain. 2015;138(Pt 7):1833–42.

    Article  PubMed  Google Scholar 

  63. Grubert C, Hurlemann R, Bewernick BH, Kayser S, Hadrysiewicz B, Axmacher N, et al. Neuropsychological safety of nucleus accumbens deep brain stimulation for major depression: effects of 12-month stimulation. World J Biol Psychiatry. 2011;12(7):516–27.

    Article  PubMed  Google Scholar 

  64. Laxton AW, Lozano AM. Deep brain stimulation for the treatment of Alzheimer disease and dementias. World neurosurgery. 2013;80(3–4):S28.e1-8.

    Google Scholar 

  65. Koski L, Kolivakis T, Yu C, Chen JK, Delaney S, Ptito A. Noninvasive brain stimulation for persistent postconcussion symptoms in mild traumatic brain injury. J Neurotrauma. 2015;32(1):38–44.

    Article  PubMed  Google Scholar 

  66. Ling G. Newsmaker interview: Geoffrey Ling. DARPA aims to rebuild brains. Interview by Emily Underwood. Science. 2013;342(6162):1029–30.

    Article  PubMed  Google Scholar 

  67. Neuroscience Underwood E. Researchers aim for an electrical memory prosthesis. Science. 2014;345(6194):250.

    Article  Google Scholar 

  68. Bricolo A, Turazzi S, Feriotti G. Prolonged posttraumatic unconsciousness: therapeutic assets and liabilities. J Neurosurg. 1980;52(5):625–34.

    Article  CAS  PubMed  Google Scholar 

  69. Lovstad M, Andelic N, Knoph R, Jerstad T, Anke A, Skandsen T, et al. Rate of disorders of consciousness in a prospective population-based study of adults with traumatic brain injury. The Journal of head trauma rehabilitation. 2014;29(5):E31–43.

    Article  PubMed  Google Scholar 

  70. Godbolt AK, Deboussard CN, Stenberg M, Lindgren M, Ulfarsson T, Borg J. Disorders of consciousness after severe traumatic brain injury: a Swedish-Icelandic study of incidence, outcomes and implications for optimizing care pathways. J Rehabil Med. 2013;45(8):741–8.

    Article  PubMed  Google Scholar 

  71. Medical aspects of the persistent vegetative state. (1). The Multi-Society Task Force on PVS. N Engl J Med. 1994;330(21):1499–508.

    Article  Google Scholar 

  72. Medical aspects of the persistent vegetative state. (2). The Multi-Society Task Force on PVS. N Engl J Med. 1994;330(22):1572–9.

    Article  Google Scholar 

  73. Giacino JT, Ashwal S, Childs N, Cranford R, Jennett B, Katz DI, et al. The minimally conscious state: definition and diagnostic criteria. Neurology. 2002;58(3):349–53.

    Article  PubMed  Google Scholar 

  74. van Erp WS, Lavrijsen JC, van de Laar FA, Vos PE, Laureys S, Koopmans RT. The vegetative state/unresponsive wakefulness syndrome: a systematic review of prevalence studies. Eur J Neurol. 2014;21(11):1361–8.

    Article  PubMed  Google Scholar 

  75. Quinkert AW, Schiff ND, Pfaff DW. Temporal patterning of pulses during deep brain stimulation affects central nervous system arousal. Behav Brain Res. 2010;214(2):377–85.

    Article  PubMed  Google Scholar 

  76. Tabansky I, Quinkert AW, Rahman N, Muller SZ, Lofgren J, Rudling J, et al. Temporally-patterned deep brain stimulation in a mouse model of multiple traumatic brain injury. Behav Brain Res. 2014;273:123–32.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Yamamoto T, Katayama Y. Deep brain stimulation therapy for the vegetative state. Neuropsychological rehabilitation. 2005;15(3–4):406–13.

    Article  PubMed  Google Scholar 

  78. Yamamoto T, Katayama Y, Kobayashi K, Kasai M, Oshima H, Fukaya C. DBS therapy for a persistent vegetative state: ten years follow-up results. Acta Neurochir Suppl. 2003;87:15–8.

    CAS  PubMed  Google Scholar 

  79. Yamamoto T, Katayama Y, Kobayashi K, Oshima H, Fukaya C, Tsubokawa T. Deep brain stimulation for the treatment of vegetative state. Eur J Neurosci. 2010;32(7):1145–51.

    Article  PubMed  Google Scholar 

  80. Yamamoto T, Katayama Y, Obuchi T, Kobayashi K, Oshima H, Fukaya C. Deep brain stimulation and spinal cord stimulation for vegetative state and minimally conscious state. World neurosurgery. 2013;80(3–4):S30.e1-9.

    Google Scholar 

  81. Yamamoto T, Katayama Y, Oshima H, Fukaya C, Kawamata T, Tsubokawa T. Deep brain stimulation therapy for a persistent vegetative state. Acta Neurochir Suppl. 2002;79:79–82.

    CAS  PubMed  Google Scholar 

  82. Yamamoto T, Kobayashi K, Kasai M, Oshima H, Fukaya C, Katayama Y. DBS therapy for the vegetative state and minimally conscious state. Acta Neurochir Suppl. 2005;93:101–4.

    Article  CAS  PubMed  Google Scholar 

  83. Yamamoto T, Katayama Y, Obuchi T, Kobayashi K, Oshima H, Fukaya C. Spinal cord stimulation for treatment of patients in the minimally conscious state. Neurol Med Chir (Tokyo). 2012;52(7):475–81.

    Article  PubMed  Google Scholar 

  84. Schiff ND, Giacino JT, Kalmar K, Victor JD, Baker K, Gerber M, et al. Behavioural improvements with thalamic stimulation after severe traumatic brain injury. Nature. 2007;448(7153):600–3.

    Article  CAS  PubMed  Google Scholar 

  85. Giacino J, Fins JJ, Machado A, Schiff ND. Central thalamic deep brain stimulation to promote recovery from chronic posttraumatic minimally conscious state: challenges and opportunities. Neuromodulation. 2012;15(4):339–49.

    Article  PubMed  Google Scholar 

  86. Thibaut A, Bruno MA, Ledoux D, Demertzi A, Laureys S. tDCS in patients with disorders of consciousness: sham-controlled randomized double-blind study. Neurology. 2014;82(13):1112–8.

    Article  PubMed  Google Scholar 

  87. Angelakis E, Liouta E, Andreadis N, Korfias S, Ktonas P, Stranjalis G, et al. Transcranial direct current stimulation effects in disorders of consciousness. Arch Phys Med Rehabil. 2014;95(2):283–9.

    Article  PubMed  Google Scholar 

  88. Piccione F, Cavinato M, Manganotti P, Formaggio E, Storti SF, Battistin L, et al. Behavioral and neurophysiological effects of repetitive transcranial magnetic stimulation on the minimally conscious state: a case study. Neurorehabilitation and neural repair. 2011;25(1):98–102.

    Article  PubMed  Google Scholar 

  89. Shi C, Flanagan SR, Samadani U. Vagus nerve stimulation to augment recovery from severe traumatic brain injury impeding consciousness: a prospective pilot clinical trial. Neurol Res. 2013;35(3):263–76.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Jorge RE, Robinson RG, Moser D, Tateno A, Crespo-Facorro B, Arndt S. Major depression following traumatic brain injury. Arch Gen Psychiatry. 2004;61(1):42–50.

    Article  PubMed  Google Scholar 

  91. Bombardier CH, Fann JR, Temkin NR, Esselman PC, Barber J, Dikmen SS. Rates of major depressive disorder and clinical outcomes following traumatic brain injury. JAMA. 2010;303(19):1938–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Lange RT, Brickell T, French LM, Ivins B, Bhagwat A, Pancholi S, et al. Risk factors for postconcussion symptom reporting after traumatic brain injury in U.S. military service members. J Neurotrauma. 2013;30(4):237–46.

    Article  PubMed  Google Scholar 

  93. Haagsma JA, Scholten AC, Andriessen TM, Vos PE, Van Beeck EF, Polinder S. Impact of depression and post-traumatic stress disorder on functional outcome and health-related quality of life of patients with mild traumatic brain injury. J Neurotrauma. 2015;32(11):853–62.

    Article  PubMed  Google Scholar 

  94. Bryant RA, O’Donnell ML, Creamer M, McFarlane AC, Clark CR, Silove D. The psychiatric sequelae of traumatic injury. Am J Psychiatry. 2010;167(3):312–20.

    Article  PubMed  Google Scholar 

  95. Diaz AP, Schwarzbold ML, Thais ME, Hohl A, Bertotti MM, Schmoeller R, et al. Psychiatric disorders and health-related quality of life after severe traumatic brain injury: a prospective study. J Neurotrauma. 2012;29(6):1029–37.

    Article  PubMed  Google Scholar 

  96. Satz P, Forney DL, Zaucha K, Asarnow RR, Light R, McCleary C, et al. Depression, cognition, and functional correlates of recovery outcome after traumatic brain injury. Brain Inj. 1998;12(7):537–53.

    Article  CAS  PubMed  Google Scholar 

  97. Fann JR, Hart T, Schomer KG. Treatment for depression after traumatic brain injury: a systematic review. J Neurotrauma. 2009;26(12):2383–402.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Lozano AM, Mayberg HS, Giacobbe P, Hamani C, Craddock RC, Kennedy SH. Subcallosal cingulate gyrus deep brain stimulation for treatment-resistant depression. Biol Psychiatry. 2008;64(6):461–7.

    Article  PubMed  Google Scholar 

  99. Hamani C, Mayberg H, Snyder B, Giacobbe P, Kennedy S, Lozano AM. Deep brain stimulation of the subcallosal cingulate gyrus for depression: anatomical location of active contacts in clinical responders and a suggested guideline for targeting. J Neurosurg. 2009;111(6):1209–15.

    Article  PubMed  Google Scholar 

  100. Kennedy SH, Giacobbe P, Rizvi SJ, Placenza FM, Nishikawa Y, Mayberg HS, et al. Deep brain stimulation for treatment-resistant depression: follow-up after 3 to 6 years. Am J Psychiatry. 2011;168(5):502–10.

    Article  PubMed  Google Scholar 

  101. Merkl A, Schneider GH, Schonecker T, Aust S, Kuhl KP, Kupsch A, et al. Antidepressant effects after short-term and chronic stimulation of the subgenual cingulate gyrus in treatment-resistant depression. Exp Neurol. 2013;249:160–8.

    Article  PubMed  Google Scholar 

  102. Puigdemont D, Perez-Egea R, Portella MJ, Molet J, de Diego-Adelino J, Gironell A, et al. Deep brain stimulation of the subcallosal cingulate gyrus: further evidence in treatment-resistant major depression. Int J Neuropsychopharmacol. 2012;15(1):121–33.

    Article  PubMed  Google Scholar 

  103. Lozano AM, Giacobbe P, Hamani C, Rizvi SJ, Kennedy SH, Kolivakis TT, et al. A multicenter pilot study of subcallosal cingulate area deep brain stimulation for treatment-resistant depression. J Neurosurg. 2012;116(2):315–22.

    Article  PubMed  Google Scholar 

  104. Ramasubbu R, Anderson S, Haffenden A, Chavda S, Kiss ZH. Double-blind optimization of subcallosal cingulate deep brain stimulation for treatment-resistant depression: a pilot study. J Psychiatry Neurosci. 2013;38(5):325–32.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Holtzheimer PE, Kelley ME, Gross RE, Filkowski MM, Garlow SJ, Barrocas A, et al. Subcallosal cingulate deep brain stimulation for treatment-resistant unipolar and bipolar depression. Arch Gen Psychiatry. 2012;69(2):150–8.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Malone DA Jr, Dougherty DD, Rezai AR, Carpenter LL, Friehs GM, Eskandar EN, et al. Deep brain stimulation of the ventral capsule/ventral striatum for treatment-resistant depression. Biol Psychiatry. 2009;65(4):267–75.

    Article  PubMed  Google Scholar 

  107. Millet B, Jaafari N, Polosan M, Baup N, Giordana B, Haegelen C, et al. Limbic versus cognitive target for deep brain stimulation in treatment-resistant depression: accumbens more promising than caudate. European neuropsychopharmacology: the journal of the European College of Neuropsychopharmacology. 2014;24(8):1229–39.

    Article  CAS  Google Scholar 

  108. Le T, Nguyen BN, Motaparthi M, Francisco GE. Incidence of abnormal muscle tone and spasticity during acute traumatic brain injury rehabilitation. Arch Phys Med Rehabil. 2000;81:1267.

    Google Scholar 

  109. Esquenazi A. Evaluation and management of spastic gait in patients with traumatic brain injury. The Journal of head trauma rehabilitation. 2004;19(2):109–18.

    Article  PubMed  Google Scholar 

  110. Fock J, Galea MP, Stillman BC, Rawicki B, Clark M. Functional outcome following Botulinum toxin A injection to reduce spastic equinus in adults with traumatic brain injury. Brain Inj. 2004;18(1):57–63.

    Article  PubMed  Google Scholar 

  111. Crooks CY, Zumsteg JM, Bell KR. Traumatic brain injury: a review of practice management and recent advances. Physical medicine and rehabilitation clinics of North America. 2007;18(4):681–710, vi.

    Google Scholar 

  112. Ashworth B. PRELIMINARY TRIAL OF CARISOPRODOL IN MULTIPLE SCLEROSIS. The Practitioner. 1964;192:540–2.

    CAS  PubMed  Google Scholar 

  113. Meythaler JM, Clayton W, Davis LK, Guin-Renfroe S, Brunner RC. Orally delivered baclofen to control spastic hypertonia in acquired brain injury. The Journal of head trauma rehabilitation. 2004;19(2):101–8.

    Article  PubMed  Google Scholar 

  114. Stokic DS, Yablon SA, Hayes A. Comparison of clinical and neurophysiologic responses to intrathecal baclofen bolus administration in moderate-to-severe spasticity after acquired brain injury. Arch Phys Med Rehabil. 2005;86(9):1801–6.

    Article  PubMed  Google Scholar 

  115. Horn TS, Yablon SA, Chow JW, Lee JE, Stokic DS. Effect of intrathecal baclofen bolus injection on lower extremity joint range of motion during gait in patients with acquired brain injury. Arch Phys Med Rehabil. 2010;91(1):30–4.

    Article  PubMed  Google Scholar 

  116. Ordia JI, Fischer E, Adamski E, Spatz EL. Continuous intrathecal baclofen infusion delivered by a programmable pump for the treatment of severe spasticity following traumatic brain injury. Neuromodulation. 2002;5(2):103–7.

    Article  PubMed  Google Scholar 

  117. Meythaler JM, Guin-Renfroe S, Grabb P, Hadley MN. Long-term continuously infused intrathecal baclofen for spastic-dystonic hypertonia in traumatic brain injury: 1-year experience. Arch Phys Med Rehabil. 1999;80(1):13–9.

    Article  CAS  PubMed  Google Scholar 

  118. Francois B, Vacher P, Roustan J, Salle JY, Vidal J, Moreau JJ, et al. Intrathecal baclofen after traumatic brain injury: early treatment using a new technique to prevent spasticity. The Journal of trauma. 2001;50(1):158–61.

    Article  CAS  PubMed  Google Scholar 

  119. Posteraro F, Calandriello B, Galli R, Logi F, Iardella L, Bordi L. Timing of intrathecal baclofen therapy in persons with acquired brain injury: influence on outcome. Brain Inj. 2013;27(13–14):1671–5.

    Article  PubMed  Google Scholar 

  120. Francisco GE, Hu MM, Boake C, Ivanhoe CB. Efficacy of early use of intrathecal baclofen therapy for treating spastic hypertonia due to acquired brain injury. Brain Inj. 2005;19(5):359–64.

    Article  CAS  PubMed  Google Scholar 

  121. Francisco GE, Latorre JM, Ivanhoe CB. Intrathecal baclofen therapy for spastic hypertonia in chronic traumatic brain injury. Brain Inj. 2007;21(3):335–8.

    Article  PubMed  Google Scholar 

  122. Macciocchi S, Seel RT, Thompson N, Byams R, Bowman B. Spinal cord injury and co-occurring traumatic brain injury: assessment and incidence. Arch Phys Med Rehabil. 2008;89(7):1350–7.

    Article  PubMed  Google Scholar 

  123. Ordia JI, Fischer E, Adamski E, Chagnon KG, Spatz EL. Continuous intrathecal baclofen infusion by a programmable pump in 131 consecutive patients with severe spasticity of spinal origin. Neuromodulation. 2002;5(1):16–24.

    Article  PubMed  Google Scholar 

  124. Zahavi A, Geertzen JH, Middel B, Staal M, Rietman JS. Long term effect (more than five years) of intrathecal baclofen on impairment, disability, and quality of life in patients with severe spasticity of spinal origin. J Neurol Neurosurg Psychiatry. 2004;75(11):1553–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Middel B, Kuipers-Upmeijer H, Bouma J, Staal M, Oenema D, Postma T, et al. Effect of intrathecal baclofen delivered by an implanted programmable pump on health related quality of life in patients with severe spasticity. J Neurol Neurosurg Psychiatry. 1997;63(2):204–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Stempien L, Tsai T. Intrathecal baclofen pump use for spasticity: a clinical survey. American journal of physical medicine & rehabilitation/ Association of Academic Physiatrists. 2000;79(6):536–41.

    Article  CAS  Google Scholar 

  127. Draulans N, Vermeersch K, Degraeuwe B, Meurrens T, Peers K, Nuttin B, et al. Intrathecal baclofen in multiple sclerosis and spinal cord injury: complications and long-term dosage evolution. Clinical rehabilitation. 2013;27(12):1137–43.

    Article  PubMed  Google Scholar 

  128. Sampson FC, Hayward A, Evans G, Morton R, Collett B. Functional benefits and cost/benefit analysis of continuous intrathecal baclofen infusion for the management of severe spasticity. J Neurosurg. 2002;96(6):1052–7.

    Article  PubMed  Google Scholar 

  129. Postma TJ, Oenema D, Terpstra S, Bouma J, Kuipers-Upmeijer H, Staal MJ, et al. Cost analysis of the treatment of severe spinal spasticity with a continuous intrathecal baclofen infusion system. PharmacoEconomics. 1999;15(4):395–404.

    Article  CAS  PubMed  Google Scholar 

  130. Nampiaparampil DE. Prevalence of chronic pain after traumatic brain injury: a systematic review. JAMA. 2008;300(6):711–9.

    Article  CAS  PubMed  Google Scholar 

  131. Garland DE, Blum CE, Waters RL. Periarticular heterotopic ossification in head-injured adults. Incidence and location. The Journal of bone and joint surgery American volume. 1980;62(7):1143–6.

    Google Scholar 

  132. Watanabe TK, Bell KR, Walker WC, Schomer K. Systematic review of interventions for post-traumatic headache. PM & R: the journal of injury, function, and rehabilitation. 2012;4(2):129–40.

    Article  Google Scholar 

  133. Elahi F, Reddy C. High cervical epidural neurostimulation for post-traumatic headache management. Pain physician. 2014;17(4):E537–41.

    PubMed  Google Scholar 

  134. Dario A, Scamoni C, Peron S, Tomei G. A case of post-traumatic cervicogenic headache treated by cervical cord stimulation. The journal of headache and pain. 2005;6(6):473.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Elahi F, Reddy C. Neuromodulation of the great auricular nerve for persistent post-traumatic headache. Pain physician. 2014;17(4):E531–6.

    PubMed  Google Scholar 

  136. Fontaine D, Bruneto JL, El Fakir H, Paquis P, Lanteri-Minet M. Short-term restoration of facial sensory loss by motor cortex stimulation in peripheral post-traumatic neuropathic pain. The journal of headache and pain. 2009;10(3):203–6.

    Article  PubMed  PubMed Central  Google Scholar 

  137. Saulino M. Spinal cord injury pain. Physical medicine and rehabilitation clinics of North America. 2014;25(2):397–410.

    Article  PubMed  Google Scholar 

  138. Lagauche D, Facione J, Albert T, Fattal C. The chronic neuropathic pain of spinal cord injury: which efficiency of neuropathic stimulation? Annals of physical and rehabilitation medicine. 2009;52(2):180–7.

    Article  CAS  PubMed  Google Scholar 

  139. de Mos M, Huygen FJ, van der Hoeven-Borgman M, Dieleman JP, Ch Stricker BH, Sturkenboom MC. Outcome of the complex regional pain syndrome. The Clinical journal of pain. 2009;25(7):590–597.

    Google Scholar 

  140. Geurts JW, Smits H, Kemler MA, Brunner F, Kessels AG, van Kleef M. Spinal cord stimulation for complex regional pain syndrome type I: a prospective cohort study with long-term follow-up. Neuromodulation. 2013;16(6):523–9; discussion 9.

    Google Scholar 

  141. Kemler MA, Barendse GA, van Kleef M, de Vet HC, Rijks CP, Furnee CA, et al. Spinal cord stimulation in patients with chronic reflex sympathetic dystrophy. N Engl J Med. 2000;343(9):618–24.

    Article  CAS  PubMed  Google Scholar 

  142. Kemler MA, de Vet HC, Barendse GA, van den Wildenberg FA, van Kleef M. Effect of spinal cord stimulation for chronic complex regional pain syndrome Type I: five-year final follow-up of patients in a randomized controlled trial. J Neurosurg. 2008;108(2):292–8.

    Article  PubMed  Google Scholar 

  143. Kemler MA, Furnee CA. Economic evaluation of spinal cord stimulation for chronic reflex sympathetic dystrophy. Neurology. 2002;59(8):1203–9.

    Article  PubMed  Google Scholar 

  144. Kozlowski AJ, Bryce TN, Dijkers MP. Time and Effort Required by Persons with Spinal Cord Injury to Learn to Use a Powered Exoskeleton for Assisted Walking. Topics in spinal cord injury rehabilitation. 2015;21(2):110–21.

    Article  PubMed  PubMed Central  Google Scholar 

  145. Yang A, Asselin P, Knezevic S, Kornfeld S, Spungen AM. Assessment of In-Hospital Walking Velocity and Level of Assistance in a Powered Exoskeleton in Persons with Spinal Cord Injury. Topics in spinal cord injury rehabilitation. 2015;21(2):100–9.

    Article  PubMed  PubMed Central  Google Scholar 

  146. Hartigan C, Kandilakis C, Dalley S, Clausen M, Wilson E, Morrison S, et al. Mobility Outcomes Following Five Training Sessions with a Powered Exoskeleton. Topics in spinal cord injury rehabilitation. 2015;21(2):93–9.

    Article  PubMed  PubMed Central  Google Scholar 

  147. Louie DR, Eng JJ, Lam T. Gait speed using powered robotic exoskeletons after spinal cord injury: a systematic review and correlational study. Journal of neuroengineering and rehabilitation. 2015;12:82.

    Article  PubMed  PubMed Central  Google Scholar 

  148. Collinger JL, Wodlinger B, Downey JE, Wang W, Tyler-Kabara EC, Weber DJ, et al. High-performance neuroprosthetic control by an individual with tetraplegia. Lancet. 2013;381(9866):557–64.

    Article  PubMed  PubMed Central  Google Scholar 

  149. Masse NY, Jarosiewicz B, Simeral JD, Bacher D, Stavisky SD, Cash SS, et al. Non-causal spike filtering improves decoding of movement intention for intracortical BCIs. J Neurosci Methods. 2014;236:58–67.

    Article  PubMed  PubMed Central  Google Scholar 

  150. King CE, Wang PT, Chui LA, Do AH, Nenadic Z. Operation of a brain-computer interface walking simulator for individuals with spinal cord injury. Journal of neuroengineering and rehabilitation. 2013;10:77.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Leiphart .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Leiphart, J. (2017). Functional Restoration for Neurological Trauma: Current Therapies and Future Directions. In: Ecklund, J., Moores, L. (eds) Neurotrauma Management for the Severely Injured Polytrauma Patient. Springer, Cham. https://doi.org/10.1007/978-3-319-40208-6_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40208-6_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40206-2

  • Online ISBN: 978-3-319-40208-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics