Skip to main content

Mechanical Ventilation in Traumatic Brain Injury

  • Chapter
  • First Online:
Neurotrauma Management for the Severely Injured Polytrauma Patient

Abstract

Mechanical ventilation is frequently required in the management of brain-injured patients. Common indications include pulmonary contusions, acute respiratory distress syndrome, neurogenic pulmonary edema, pneumonia, fluid overload, airway compromise from depressed mental status, and need for sedatives to facilitate procedures and control intracranial pressure. Cautious management of mechanical ventilation is required to avoid secondary injury from hypoxemia, hypo-or hypercarbia, or decreases in cerebral perfusion pressure. Optimal ventilator management utilizes a “lung protective ” strategy that emphasizes adequate positive end expiratory pressure in concert with low tidal volumes and plateau pressures to prevent ventilator-induced lung injury. This strategy can be safely applied in the majority of brain-injured patients. Patients with concurrent severe acute respiratory distress syndrome and traumatic brain injury present a significant therapeutic challenge, as it may be difficult to maintain adequate oxygenation and an appropriate carbon dioxide level without injurious ventilator settings. Strategies that have been successfully applied in this patient population include airway pressure release ventilation, prone positioning, and extracorporeal lung support techniques, although none of these methods have been validated in prospective trials in this specific population.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vukic M, Negovetic L, Kovac D, et al. The effect of implementation of guidelines for the management of severe head injury on patient treatment and outcome. Acta Neurochir (Wien). 1999;141:1203–8.

    Article  CAS  Google Scholar 

  2. Gerber LM, Chiu YL, Carney N, et al. Marked reduction in mortality in patients with severe traumatic brain injury. J Neurosurg. 2013;119:1583–90.

    Article  PubMed  Google Scholar 

  3. Brain Trauma F, American Association of Neurological S, Congress of Neurological S, et al. Guidelines for the management of severe traumatic brain injury. I. Blood pressure and oxygenation. J Neurotrauma 2007; 24 Suppl 1:S7–13.

    Google Scholar 

  4. Brain Trauma F, American Association of Neurological S, Congress of Neurological S, et al. Guidelines for the management of severe traumatic brain injury. XIV. Hyperventilation. J Neurotrauma 2007; 24 Suppl 1:S87–90.

    Google Scholar 

  5. Dumont TM, Visioni AJ, Rughani AI, et al. Inappropriate prehospital ventilation in severe traumatic brain injury increases in-hospital mortality. J Neurotrauma. 2010;27:1233–41.

    Article  PubMed  Google Scholar 

  6. Mascia L, Zavala E, Bosma K, et al. High tidal volume is associated with the development of acute lung injury after severe brain injury: an international observational study. Crit Care Med. 2007;35:1815–20.

    Article  PubMed  Google Scholar 

  7. Force ADT, Ranieri VM, Rubenfeld GD, et al. Acute respiratory distress syndrome: the Berlin Definition. JAMA. 2012;307:2526–33.

    Google Scholar 

  8. Holland MC, Mackersie RC, Morabito D, et al. The development of acute lung injury is associated with worse neurologic outcome in patients with severe traumatic brain injury. J Trauma. 2003;55:106–11.

    Article  PubMed  Google Scholar 

  9. Contant CF, Valadka AB, Gopinath SP, et al. Adult respiratory distress syndrome: a complication of induced hypertension after severe head injury. J Neurosurg. 2001;95:560–8.

    Article  CAS  PubMed  Google Scholar 

  10. Bratton SL, Davis RL. Acute lung injury in isolated traumatic brain injury. Neurosurgery 1997; 40:707–712; discussion 712.

    Google Scholar 

  11. Piek J, Chesnut RM, Marshall LF, et al. Extracranial complications of severe head injury. J Neurosurg. 1992;77:901–7.

    Article  CAS  PubMed  Google Scholar 

  12. Zygun DA, Kortbeek JB, Fick GH, et al. Non-neurologic organ dysfunction in severe traumatic brain injury. Crit Care Med. 2005;33:654–60.

    Article  PubMed  Google Scholar 

  13. Salim A, Martin M, Brown C, et al. The presence of the adult respiratory distress syndrome does not worsen mortality or discharge disability in blunt trauma patients with severe traumatic brain injury. Injury. 2008;39:30–5.

    Article  PubMed  Google Scholar 

  14. Miller PR, Croce MA, Kilgo PD, et al. Acute respiratory distress syndrome in blunt trauma: identification of independent risk factors. Am Surg 2002; 68:845–850; discussion 850-841.

    Google Scholar 

  15. Mascia L. Acute lung injury in patients with severe brain injury: a double hit model. Neurocrit Care. 2009;11:417–26.

    Article  PubMed  Google Scholar 

  16. Croce MA, Fabian TC, Davis KA, et al. Early and late acute respiratory distress syndrome: two distinct clinical entities. J Trauma 1999; 46:361–366; discussion 366–368.

    Google Scholar 

  17. Badjatia N, Carney N, Crocco TJ, et al. Guidelines for prehospital management of traumatic brain injury, 2nd edition. Prehosp Emerg Care. 2008;12(Suppl 1):S1–52.

    Article  PubMed  Google Scholar 

  18. Davison DL, Terek M, Chawla LS. Neurogenic pulmonary edema. Crit Care. 2012;16:212.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Maung AA, Kaplan LJ. Mechanical ventilation after injury. J Intensive Care Med. 2014;29:128–37.

    Article  PubMed  Google Scholar 

  20. Andrews PJ, Sleeman DH, Statham PF, et al. Predicting recovery in patients suffering from traumatic brain injury by using admission variables and physiological data: a comparison between decision tree analysis and logistic regression. J Neurosurg. 2002;97:326–36.

    Article  PubMed  Google Scholar 

  21. Young N, Rhodes JK, Mascia L, et al. Ventilatory strategies for patients with acute brain injury. Curr Opin Crit Care. 2010;16:45–52.

    Article  PubMed  Google Scholar 

  22. Gentleman D, Jennett B. Hazards of inter-hospital transfer of comatose head-injured patients. Lancet. 1981;2:853–4.

    Article  CAS  PubMed  Google Scholar 

  23. Jones PA, Andrews PJ, Midgley S, et al. Measuring the burden of secondary insults in head-injured patients during intensive care. J Neurosurg Anesthesiol. 1994;6:4–14.

    Article  CAS  PubMed  Google Scholar 

  24. Wald SL, Shackford SR, Fenwick J. The effect of secondary insults on mortality and long-term disability after severe head injury in a rural region without a trauma system. J Trauma 1993; 34:377–381; discussion 381–372.

    Google Scholar 

  25. Protheroe RT, Gwinnutt CL. Early hospital care of severe traumatic brain injury. Anaesthesia. 2011;66:1035–47.

    Article  CAS  PubMed  Google Scholar 

  26. Warner KJ, Cuschieri J, Copass MK, et al. The impact of prehospital ventilation on outcome after severe traumatic brain injury. J Trauma 2007;62:1330–1336; discussion 1336–1338.

    Google Scholar 

  27. Stevens RD, Lazaridis C, Chalela JA. The role of mechanical ventilation in acute brain injury. Neurol Clin 2008; 26:543–563, x.

    Google Scholar 

  28. Mascia L, Grasso S, Fiore T, et al. Cerebro-pulmonary interactions during the application of low levels of positive end-expiratory pressure. Intensive Care Med. 2005;31:373–9.

    Article  PubMed  Google Scholar 

  29. Muench E, Bauhuf C, Roth H, et al. Effects of positive end-expiratory pressure on regional cerebral blood flow, intracranial pressure, and brain tissue oxygenation. Crit Care Med. 2005;33:2367–72.

    Article  PubMed  Google Scholar 

  30. Georgiadis D, Schwarz S, Baumgartner RW, et al. Influence of positive end-expiratory pressure on intracranial pressure and cerebral perfusion pressure in patients with acute stroke. Stroke. 2001;32:2088–92.

    Article  CAS  PubMed  Google Scholar 

  31. Cooper KR, Boswell PA, Choi SC. Safe use of PEEP in patients with severe head injury. J Neurosurg. 1985;63:552–5.

    Article  CAS  PubMed  Google Scholar 

  32. Burchiel KJ, Steege TD, Wyler AR. Intracranial pressure changes in brain-injured patients requiring positive end-expiratory pressure ventilation. Neurosurgery. 1981;8:443–9.

    Article  CAS  PubMed  Google Scholar 

  33. McGuire G, Crossley D, Richards J, et al. Effects of varying levels of positive end-expiratory pressure on intracranial pressure and cerebral perfusion pressure. Crit Care Med. 1997;25:1059–62.

    Article  CAS  PubMed  Google Scholar 

  34. Huynh T, Messer M, Sing RF, et al. Positive end-expiratory pressure alters intracranial and cerebral perfusion pressure in severe traumatic brain injury. J Trauma 2002; 53:488–492; discussion 492–483.

    Google Scholar 

  35. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. The acute respiratory distress syndrome network. N Engl J Med 2000;342:1301–1308.

    Google Scholar 

  36. Serpa Neto A, Cardoso SO, Manetta JA, et al. Association between use of lung-protective ventilation with lower tidal volumes and clinical outcomes among patients without acute respiratory distress syndrome: a meta-analysis. JAMA 2012;308:1651–1659.

    Google Scholar 

  37. Fuller BM, Mohr NM, Drewry AM, et al. Lower tidal volume at initiation of mechanical ventilation may reduce progression to acute respiratory distress syndrome: a systematic review. Crit Care. 2013;17:R11.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Eichacker PQ, Gerstenberger EP, Banks SM, et al. Meta-analysis of acute lung injury and acute respiratory distress syndrome trials testing low tidal volumes. Am J Respir Crit Care Med. 2002;166:1510–4.

    Article  PubMed  Google Scholar 

  39. Amato MB, Meade MO, Slutsky AS, et al. Driving pressure and survival in the acute respiratory distress syndrome. N Engl J Med. 2015;372:747–55.

    Article  CAS  PubMed  Google Scholar 

  40. Lee MC, Klassen AC, Resch JA. Respiratory pattern disturbances in ischemic cerebral vascular disease. Stroke. 1974;5:612–6.

    Article  CAS  PubMed  Google Scholar 

  41. Slutsky AS, Ranieri VM. Ventilator-induced lung injury. N Engl J Med. 2013;369:2126–36.

    Article  CAS  PubMed  Google Scholar 

  42. Lauerman MH, Stein DM. Multicompartment management of patients with severe traumatic brain injury. Curr Opin Anaesthesiol. 2014;27:219–24.

    Article  PubMed  Google Scholar 

  43. Briel M, Meade M, Mercat A, et al. Higher vs lower positive end-expiratory pressure in patients with acute lung injury and acute respiratory distress syndrome: systematic review and meta-analysis. JAMA. 2010;303:865–73.

    Article  CAS  PubMed  Google Scholar 

  44. Caricato A, Conti G, Della Corte F, et al. Effects of PEEP on the intracranial system of patients with head injury and subarachnoid hemorrhage: the role of respiratory system compliance. J Trauma. 2005;58:571–6.

    Article  PubMed  Google Scholar 

  45. Zhang XY, Yang ZJ, Wang QX, et al. Impact of positive end-expiratory pressure on cerebral injury patients with hypoxemia. Am J Emerg Med. 2011;29:699–703.

    Article  PubMed  Google Scholar 

  46. Barbas CS, de Matos GF, Okamoto V, et al. Lung recruitment maneuvers in acute respiratory distress syndrome. Respir Care Clin N Am 2003;9:401–418, vii.

    Google Scholar 

  47. Bein T, Kuhr LP, Bele S, et al. Lung recruitment maneuver in patients with cerebral injury: effects on intracranial pressure and cerebral metabolism. Intensive Care Med. 2002;28:554–8.

    Article  CAS  PubMed  Google Scholar 

  48. Damiani E, Adrario E, Girardis M, et al. Arterial hyperoxia and mortality in critically ill patients: a systematic review and meta-analysis. Crit Care. 2014;18:711.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Rincon F, Kang J, Vibbert M, et al. Significance of arterial hyperoxia and relationship with case fatality in traumatic brain injury: a multicentre cohort study. J Neurol Neurosurg Psychiatry. 2014;85:799–805.

    Article  PubMed  Google Scholar 

  50. Davis DP, Meade W, Sise MJ, et al. Both hypoxemia and extreme hyperoxemia may be detrimental in patients with severe traumatic brain injury. J Neurotrauma. 2009;26:2217–23.

    Article  PubMed  Google Scholar 

  51. Marik PE, Young A, Sibole S, et al. The effect of APRV ventilation on ICP and cerebral hemodynamics. Neurocrit Care. 2012;17:219–23.

    Article  PubMed  Google Scholar 

  52. Clarke JP. The effects of inverse ratio ventilation on intracranial pressure: a preliminary report. Intensive Care Med. 1997;23:106–9.

    Article  CAS  PubMed  Google Scholar 

  53. Beitler JR, Shaefi S, Montesi SB, et al. Prone positioning reduces mortality from acute respiratory distress syndrome in the low tidal volume era: a meta-analysis. Intensive Care Med. 2014;40:332–41.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Roth C, Ferbert A, Deinsberger W, et al. Does prone positioning increase intracranial pressure? A retrospective analysis of patients with acute brain injury and acute respiratory failure. Neurocrit Care. 2014;21:186–91.

    Article  PubMed  Google Scholar 

  55. Adhikari NK, Dellinger RP, Lundin S, et al. Inhaled nitric oxide does not reduce mortality in patients with acute respiratory distress syndrome regardless of severity: systematic review and meta-analysis. Crit Care Med. 2014;42:404–12.

    Article  CAS  PubMed  Google Scholar 

  56. Papadimos TJ, Medhkour A, Yermal S. Successful use of inhaled nitric oxide to decrease intracranial pressure in a patient with severe traumatic brain injury complicated by acute respiratory distress syndrome: a role for an anti-inflammatory mechanism? Scand J Trauma Resusc Emerg Med. 2009;17:5.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Peillon D, Jault V, Le Vavaseur O, et al. Effect of inhaled nitric oxide in a patient with intracranial hypertension. Ann Fr Anesth Reanim 1999;18:225–229.

    Google Scholar 

  58. Vavilala MS, Roberts JS, Moore AE, et al. The influence of inhaled nitric oxide on cerebral blood flow and metabolism in a child with traumatic brain injury. Anesth Analg 2001; 93:351–353, 353rd contents page.

    Google Scholar 

  59. Gritti P, Lanterna LA, Re M, et al. The use of inhaled nitric oxide and prone position in an ARDS patient with severe traumatic brain injury during spine stabilization. J Anesth. 2013;27:293–7.

    Article  PubMed  Google Scholar 

  60. Papadimos TJ. The beneficial effects of inhaled nitric oxide in patients with severe traumatic brain injury complicated by acute respiratory distress syndrome: a hypothesis. J Trauma Manag Outcomes. 2008;2:1.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Alhazzani W, Alshahrani M, Jaeschke R, et al. Neuromuscular blocking agents in acute respiratory distress syndrome: a systematic review and meta-analysis of randomized controlled trials. Crit Care. 2013;17:R43.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Brain Trauma F, American Association of Neurological S, Congress of Neurological S, et al. Guidelines for the management of severe traumatic brain injury. XI. Anesthetics, analgesics, and sedatives. J Neurotrauma 2007;24 Suppl 1:S71–76.

    Google Scholar 

  63. Peek GJ, Mugford M, Tiruvoipati R, et al. Efficacy and economic assessment of conventional ventilatory support versus extracorporeal membrane oxygenation for severe adult respiratory failure (CESAR): a multicentre randomised controlled trial. Lancet. 2009;374:1351–63.

    Article  PubMed  Google Scholar 

  64. Biderman P, Einav S, Fainblut M, et al. Extracorporeal life support in patients with multiple injuries and severe respiratory failure: a single-center experience? J Trauma Acute Care Surg. 2013;75:907–12.

    Article  PubMed  Google Scholar 

  65. Biscotti M, Gannon W, Abrams D, et al. Extracorporeal membrane oxygenation use in patients with traumatic brain injury. Perfusion 2014.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher S. King .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

King, C.S., Altaweel, L. (2017). Mechanical Ventilation in Traumatic Brain Injury. In: Ecklund, J., Moores, L. (eds) Neurotrauma Management for the Severely Injured Polytrauma Patient. Springer, Cham. https://doi.org/10.1007/978-3-319-40208-6_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40208-6_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40206-2

  • Online ISBN: 978-3-319-40208-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics