Skip to main content

Transport of the Neurotrauma Patient

  • Chapter
  • First Online:
Neurotrauma Management for the Severely Injured Polytrauma Patient

Abstract

Traumatic brain injury (TBI) is a common problem in both civilian and military settings. While the initial injury can be devastating, additional physiologic insults are well known to potentiate the initial injury and worsen outcomes. New evidence suggests that the hypobaric environment of aeromedical transport can independently increase inflammation, cerebral edema, and alterations in the cerebral metabolic rate. Field responders and transport teams are instrumental in limiting physiologic second hits and minimizing subsequent injury. Although patient movement may be absolutely mandatory, transport should be approached as a high-risk procedure: patient selection and preprocedural planning are paramount to minimizing transport-related complications. Conditions to avoid for improved outcome include: hypotension, hypoxia, hypocarbia, hypercarbia, hypothermia, hyperthermia, intracerebral pressure elevations, and delays in transport. Emphasis should be on maintenance of the airway, protection of the cervical spine, transport to the definitive location when possible, and the qualifications and capabilities of the transport members. While ground transport by itself can introduce risk, air transport of the acute neurotrauma patient introduces additional complexity. The air transport environment is physiologically hostile. Environmental stressors include hypobarism, hypoxemia, gravitational and acceleration forces, noise, vibration, and decreased humidity. Depending on the distance to be traveled, the austerity of the transport environment can also have a profound effect on ability to diagnose and treat the deteriorating patient. Each of these environmental stressors can potentially exacerbate TBI and must be ameliorated. Ideally, neurocritical care principles and practice should be extended to the care of the patient during all phases of transport .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Centers for Disease Control and Prevention. Report to Congress on Traumatic Brain Injury in the United States: Epidemiology and Rehabilitation. National Center for Injury Prevention and Control; Division of Unintentional Injury Prevention. Atlanta, GA; 2015.

    Google Scholar 

  2. CDC, NIH, DOD, and VA Leadership Panel. Report to Congress on Traumatic Brain Injury in the United States: Understanding the Public Health Problem among Current and Former Military Personnel. Centers for Disease Control and Prevention (CDC), the National Institutes of Health (NIH), the Department of Defense (DOD), and the Department of Veterans Affairs (VA). 2013.

    Google Scholar 

  3. Goodman MD, Makley AT, Lentsch AB, et al. Traumatic brain injury and aeromedical evacuation: when is the brain fit to fly? J Surg Res. 2010;164(2):286–93.

    Article  PubMed  Google Scholar 

  4. Johannigman JA, Zonies D, Dubose J, et al. Reducing secondary insults in traumatic brain injury. Mil Med. 2015;180(3 Suppl):50–5.

    Article  PubMed  Google Scholar 

  5. Blakeman TC and Branson RD. Inter- and Intra-hospital Transport of the Critically Ill. Respiratory Care. 1 June 2013;58(6):1008–1023.

    Google Scholar 

  6. Bekelis K, Missios S, Mackenzie TA. Prehospital helicopter transport and survival of patients with traumatic brain injury. Ann Surg. 2015;261(3):579–85.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Davis DP, Peay J, Serrano JA, et al. The impact of aeromedical response to patients with moderate to severe traumatic brain injury. Ann Emerg Med. 2005;46:115–22.

    Article  PubMed  Google Scholar 

  8. Meizoso JP, Valle EJ, Allen CJ, et al. Decreased mortality after prehospital interventions in severely injured trauma patients. J Trauma Acute Care Surg. 2015;79(2):227–31.

    Article  PubMed  Google Scholar 

  9. ACS TQIP Best Practices in the Management of Traumatic Brain Injury. American College of Surgeons Trauma Quality Improvement Program. January 2015.

    Google Scholar 

  10. Härtl R, Gerber LM, Iacono L, et al. Direct transport within an organized state trauma system reduces mortality in patients with severe traumatic brain injury. J Trauma. 2006;60(6):1250–1256; discussion 1256.

    Google Scholar 

  11. Murray JA, Demetriades D, Berne TV, et al. Prehospital intubation in patients with severe head injury. J Trauma. 2000;49:1065–70.

    Article  CAS  PubMed  Google Scholar 

  12. Davis DP, Peay J, Sise MJ, et al. The impact of prehospital endotracheal intubation on outcome in moderate to severe traumatic brain injury. J Trauma. 2005;58:933–9.

    Article  PubMed  Google Scholar 

  13. Bernard SA, Nguyen V, Cameron P, et al. Prehospital rapid sequence intubation improves functional outcome for patients with severe traumatic brain injury: a randomized controlled trial. Ann Surg. 2010;252:959–65.

    Article  PubMed  Google Scholar 

  14. Franschman G, Peerdeman SM, Andriessen TM, et al. Effect of secondary prehospital risk factors on outcome in severe traumatic brain injury in the context of fast access to trauma care. J Trauma. 2011;71:826–32.

    Article  PubMed  Google Scholar 

  15. Karamanos E, Talving P, Skiada D, et al. Is prehospital endotracheal intubation associated with improved outcomes in isolated severe head injury? A matched cohort analysis. Prehosp Disaster Med. 2014;29:32–6.

    Article  PubMed  Google Scholar 

  16. Tuma M, El-Menyar A, Abdelrahman H, et al. Prehospital intubation in patients with isolated severe traumatic brain injury: a 4-year observational study. Crit Care Res Pract. 2014;2014:1–6.

    Article  Google Scholar 

  17. Davis DP, Koprowicz KM, Newgard CD, et al. The relationship between out-of-hospital airway management and outcome among trauma patients with Glasgow Coma Scale Scores of 8 or less. Prehosp Emerg Care. 2011;15(2):184–192.

    Google Scholar 

  18. Hills MW, Deane SA. Head injury and facial injury: is there an increased risk of cervical spine injury? J Trauma. 1993;34(4):549–553; discussion 553–554.

    Google Scholar 

  19. Tescher AN, Rindflesch AB, Youdas JW, et al. Range-of-motion restriction and craniofacial tissue-interface pressure from four cervical collars. J Trauma. 2007;63(5):1120–6.

    Article  PubMed  Google Scholar 

  20. Unterberg AW, Stover J, Kress B, et al. Edema and brain trauma. Neuroscience. 2004;129(4):1021–9.

    Article  CAS  PubMed  Google Scholar 

  21. Bareyre F, Wahl F, McIntosh TK, et al. Time course of cerebral edema after traumatic brain injury in rats: effects of riluzole and mannitol. J Neurotrauma. 1997;14(11):839–49.

    Article  CAS  PubMed  Google Scholar 

  22. Orr RA, Felmet KA, Han Y, et al. Pediatric specialized transport teams are associated with improved outcomes. Pediatrics. 2009;124(1):40–8.

    Article  PubMed  Google Scholar 

  23. Jarden RJ, Quirke S. Improving safety and documentation in intrahospital transport: development of an intrahospital transport tool for critically ill patients. Intensive Crit Care Nurs. 2010;26(2):101–7.

    Article  PubMed  Google Scholar 

  24. Choi HK, Shin SD, Ro YS, et al. A before- and after-intervention trial for reducing unexpected events during the intrahospital transport of emergency patients. Am J Emerg Med. 2012;30(8):1433–40.

    Article  PubMed  Google Scholar 

  25. Goodman MD, Makley AT, Huber NL, et al. Hypobaric hypoxia exacerbates the neuroinflammatory response to traumatic brain injury. J Surg Res. 2011;165(1):30–7.

    Article  CAS  PubMed  Google Scholar 

  26. Skovira JW, Kabadi SV, Wu J, et al. Simulated Aeromedical Evacuation Exacerbates Experimental Brain Injury. J Neurotrauma. 2016. [Epub ahead of print].

    Google Scholar 

  27. Johannigman JA, Branson R, Lecroy D, et al. Autonomous control of inspired oxygen concentration during mechanical ventilation of the critically injured trauma patient. J Trauma. 2009;66(2):386–92.

    Article  PubMed  Google Scholar 

  28. Chi JH, Knudson MM, Vassar MJ, et al. Prehospital hypoxia affects outcome in patients with traumatic brain injury: a prospective multicenter study. J Trauma. 2006;61(5):1134–41.

    Article  PubMed  Google Scholar 

  29. Huynh T, Messer M, Sing RF, et al. Positive end-expiratory pressure alters intracranial and cerebral perfusion pressure in severe traumatic brain injury. J Trauma. 2002;53(3):488–92; discussion 492–493.

    Google Scholar 

  30. Barnes SL, Branson R, Gallo LA, et al. En-route care in the air: snapshot of mechanical ventilation at 37,000 feet. J Trauma. 2008;64(2 Suppl):S129–134; discussion S134–135.

    Google Scholar 

  31. Bouma GJ, Muizelaar JP, Choi SC, et al. Cerebral circulation and metabolism after severe traumatic brain injury: the elusive role of ischemia. J Neurosurg. 1991;75:685–93.

    Article  CAS  PubMed  Google Scholar 

  32. Manley GT, Hemphill JC, Morabito D, et al. Cerebral oxygenation during hemorrhagic shock: perils of hyperventilation and the therapeutic potential of hypoventilation. J Trauma. 2000;48: 1025–1032; discussion 1032–1033.

    Google Scholar 

  33. Jeremitsky E, Omert L, Dunham CM, et al. Harbingers of poor outcome the day after severe brain injury: hypothermia, hypoxia, and hypoperfusion. J Trauma. 2003;54(2):312–9.

    Article  PubMed  Google Scholar 

  34. Davis DP, Dunford JV, Ochs M, et al. The use of quantitative end-tidal capnometry to avoid inadvertent severe hyperventilation in patients with head injury after paramedic rapid sequence intubation. J Trauma. 2004;56:808–14.

    Article  PubMed  Google Scholar 

  35. Palmon SC, Liu M, Moore LE, et al. Capnography facilitates tight control of ventilation during transport. Crit Care Med. 1996;24(4):608–11.

    Article  CAS  PubMed  Google Scholar 

  36. Helm M, Schuster R, Hauke J, et al. Tight control of prehospital ventilation by capnography in major trauma victims. Br J Anaesth. 2003;90(3):327–32.

    Article  CAS  PubMed  Google Scholar 

  37. Hinkelbein J, Floss F, Denz C, et al. Accuracy and precision of three different methods to determine PCO2 (PaCO2 vs. PetCO2 vs. PtcCO2) during interhospital ground transport of critically ill and ventilated adults. J Trauma. 2008;65(1):10–8.

    Article  PubMed  Google Scholar 

  38. Walsh BK, Crotwell DN, Restrepo RD. American association for respiratory care clinical practice guildelines: capnography/capnometry during mechanical ventilation. Respir Care. 2011;56(4):503–9.

    Article  PubMed  Google Scholar 

  39. Chestnut RM, Marshall SB, Piek J, et al. Early and late systemic hypotension as a frequent and fundamental source of cerebral ischemia following severe brain injury in the traumatic coma data bank. Acta Neurochir. 1993;59(suppl):121–5.

    Google Scholar 

  40. Clifton GL, Allen S, Barrodale P, et al. A phase II study of moderate hypothermia in severe brain injury. J Neurotrauma. 1993;10:263–73.

    Article  CAS  PubMed  Google Scholar 

  41. Marion DW, Penrod LE, Kelsey SF, et al. Treatment of traumatic brain injury with moderate hypothermia. N Engl J Med. 1997;336:540–6.

    Article  CAS  PubMed  Google Scholar 

  42. Hifumi T, Kuroda Y, Kawakita K, et al. Fever Control Management Is Preferable to Mild Therapeutic Hypothermia in Traumatic Brain Injury Patients with Abbreviated Injury Scale 3–4: A Multi-Center, Randomized Controlled Trial. J Neurotrauma. 2015. [Epub ahead of print].

    Google Scholar 

  43. Jones PA, Andrews PJ, Midgley S, et al. Measuring the burden of secondary insults in head-injured patients during intensive care. J Neurosurg Anesthesiol. 1994;6(1):4–14.

    Article  CAS  PubMed  Google Scholar 

  44. Cooper PR, Golfinos JG, eds. Head Injury. 4th ed. New York: McGraw-Hill; 2000:239–240.

    Google Scholar 

  45. Shahlaie K, Keachie K, Hutchins IM, et al. Risk factors for posttraumatic vasospasm. J Neurosurg. 2011;115(3):602–11.

    Article  PubMed  Google Scholar 

  46. Guidelines for the Management of Severe Traumatic Brain Injury 3rd Edition. Brain Trauma Foundation. J Neurotrauma. Supp 1, 2007;24:S1–106.

    Google Scholar 

  47. Temkin NR, Dikmen SS, Wilensky AJ, et al. A randomized, double-blind study of phenytoin for the prevention of post-traumaticseizures. N Engl J Med. 1990;323(8):497–502.

    Article  CAS  PubMed  Google Scholar 

  48. Marik PE, Vasu T, Hirani A, et al. Stress ulcer prophylaxis in the new millennium: A systematic review and meta-analysis. Crit Care Med. 2010;38(11):2222–8.

    Article  PubMed  Google Scholar 

  49. Fang R, Dorlac GR, Allan PF, et al. Intercontinental aeromedical evacuation of patients with traumatic brain injuries during Operations Iraqi Freedom and Enduring Freedom. Neurosurg Focus. 2010;28(5):El1:1–7.

    Google Scholar 

  50. Prisco L, Iscra F, Ganau M, et al. Early predictive factors on mortality in head injured patients: a retrospective analysis of 112 traumatic brain injured patients. J Neurosurg Sci. 2012;56(2):131–6.

    CAS  PubMed  Google Scholar 

  51. Jeremitsky E, Omert LA, Dunham CM, et al. The impact of hyper- glycemia on patients withsevere brain injury. J Trauma. 2005;58(1):47–50.

    Article  CAS  PubMed  Google Scholar 

  52. Liu-DeRyke X, CoUingridge DS, Orme J, et al. Clinical impact of early hyperglycemia during acute phase of traumatic brain injury. Neurocrit Care. 2009;11(2):151–7.

    Article  PubMed  Google Scholar 

  53. Salim A, Hadjizacharia P, Dubose J, et al. Persistent hyperglycemia in severe traumatic brain injury: an independent predictor of outcome. Am Surg. 2009;75(1):25–9.

    PubMed  Google Scholar 

  54. Vespa P, McAnhur DL, Stein N, et al. Tight glycémie control increases metabolic distress in traumatic brain injury: a randomized controlled within-subjects trial. Crit Care Med. 2012;40(6):1923–9.

    Article  CAS  PubMed  Google Scholar 

  55. Lenartova L, Janciak I, Wilbacher I, et al. Austrian severe TBI study investigators. severe traumatic brain injury in Austria III: prehospital status and treatment. Wien Klin Wochenschr. 2007;119(1–2):35–45.

    Article  PubMed  Google Scholar 

  56. Stephens CT, Gumbert S, Holcomb JB. Trauma-associated bleeding: management of massive transfusion. Curr Opin Anaesthesiol. 2016. [Epub ahead of print].

    Google Scholar 

  57. Murphy CH, Hess JR. Massive transfusion: red blood cell to plasma and platelet unit ratios for resuscitation of massive hemorrhage. Curr Opin Hematol. 2015;22(6):533–9.

    Article  PubMed  Google Scholar 

  58. Jenkins D, Stubbs J, Williams S, et al. Implementation and execution of civilian remote damage control resuscitation programs. Shock. 2014;41(Suppl 1):84–9.

    Article  PubMed  Google Scholar 

  59. Forgione MA, Moores LE, Wortmann GW. Prevention of combat-related infections guidelines panel. Prevention of infections associated with combat-related central nervous system injuries. J Trauma. 2011;71(2 Suppl 2):S258–263.

    Google Scholar 

  60. Bell RS, Vo AH, Neal C, et al. Military traumatic brain and spinal column injury: a 5-year study of the impact blast and other military grade weaponry on the central nervous system. J Trauma. 2009;66:S104–11.

    Article  PubMed  Google Scholar 

  61. Silva PP, Bhatnagar S, Herman SD, et al. Predictors of hypopituitarism in patients with traumatic brain injury. J Neurotrauma. 2015;32(22):1789–95.

    Article  PubMed  Google Scholar 

  62. Knotts D, Arthur AO, Holder P, et al. Pneumothorax volume expansion in helicopter emergency medical services transport. Air Med J. 2013;32(3):138–143.

    Google Scholar 

  63. Britton T, Blakeman TC, Eggert J, et al. Managing endotracheal tube cuff pressure at altitude: a comparison of four methods. J Trauma Acute Care Surg. 2014;77(3 Suppl 2):S240–4.

    Article  PubMed  Google Scholar 

  64. Donovan DJ, Jl Iskandar, et al. Aeromedical evacuation of patients with pneumocephalus; outcomes in 21 cases. Aviant Space Environ Med. 2008;79(1):30–5.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Warren C. Dorlac .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Huebner, B.R., Dorlac, G.R., Dorlac, W.C. (2017). Transport of the Neurotrauma Patient. In: Ecklund, J., Moores, L. (eds) Neurotrauma Management for the Severely Injured Polytrauma Patient. Springer, Cham. https://doi.org/10.1007/978-3-319-40208-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40208-6_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40206-2

  • Online ISBN: 978-3-319-40208-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics