Skip to main content

The Use of Trace Evidence in Missing Persons Investigations

  • Chapter
  • First Online:
  • 2090 Accesses

Abstract

Trace evidence is ubiquitous at crime scenes and can be an invaluable source of intelligence and collaborative evidence for serious offences. The ability of trace evidence to transfer from suspect to victim, suspect to crime scene, and between crime scenes means that these forms of physical evidence can provide links between individuals and locations. The types of trace evidence available for the forensic investigator are numerous and span many traditional fields of science, including chemistry, physics, palynology, geoscience, and polymer sciences, to name but five. This chapter will introduce a wide range of trace evidence types and their evidential value in cases, such as missing persons investigations. Additionally, it will focus in more detail upon some of the more common forms of trace evidence analysed in casework, including hairs and fibres, and highlight the potential of less commonly used evidence such as soil, dust, and glitter. The ability of trace evidence to provide intelligence and associative information in a case relies upon its successful identification, retrieval, and analysis. This chapter will outline the techniques used to achieve this and will provide case examples as to their use.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aardahl, K., Kirkowski, S., & Blackledge, R. D. (2005). A target glitter study. Science and Justice, 45, 7–12.

    Article  PubMed  Google Scholar 

  • Andrasko, J. (1981). Forensic analysis of lipsticks. Forensic Science International, 17, 235–251.

    Article  Google Scholar 

  • Andrasko, J., & Stocklassa, B. (1990). Shampoo residue profiles in human head hair. Journal of Forensic Sciences, 35(3), 569–579.

    Article  PubMed  Google Scholar 

  • Barrett, J. A., Siegel, J. A., & Goodpaster, J. V. (2010). Forensic discrimination of dyed hair color: I. UV-visible microspectrophotometry. Journal of Forensic Sciences, 55(2), 323–333.

    Article  PubMed  Google Scholar 

  • Biermann, T. W., & Grieve, M. C. (1998). A computerised database of mail order garments: A contribution towards estimating the frequency of fibre types found in clothing. Part 3: The content of the databank—Is it representative? Forensic Science International, 95, 117–131.

    Article  Google Scholar 

  • Buckle, J., Fung, T., & Ohashi, K. (1987). Automotive topcoat colours: Occurrence frequencies in Canada. Canadian Society of Forensic Sciences, 20, 45–56.

    Article  Google Scholar 

  • Bull, P. A., Morgan, R. M., Sagovsky, A., & Hughes, G. J. A. (2006). The transfer and persistence of trace particulates: Experimental studies using clothing fabrics. Science and Justice, 46(3), 185–195.

    Article  PubMed  Google Scholar 

  • Buzzini, P., Massonnet, G., Birrer, S., Egli, N. M., Mazzella, W., & Fortini, A. (2005). Survey of crowbar and household paints in burglary cases—Population studies, transfer and interpretation. Forensic Science International, 152, 221–234.

    Article  PubMed  Google Scholar 

  • Caddy, B. (2001). Forensic examination of glass and paint. London: Taylor and Francis.

    Book  Google Scholar 

  • Chablis, S. (2001). Scene of crime evidence: Fibres. In 13th Interpol Forensic Science Symposium, Lyon France.

    Google Scholar 

  • Challinor, J. M. (1995). Characterisation of wood by pyrolysis derivatization-gas chromatography/mass spectrometry. Journal of Analytical and Applied Pyrolysis, 35, 93–107.

    Article  Google Scholar 

  • Choudhry, M. Y. (1988). A novel technique for the collection and recovery of foreign fibers in forensic science casework. Journal of Forensic Sciences, 33(1), 249–253.

    Article  Google Scholar 

  • Cole, M. D., & Thorpe, J. W. (1992). The analysis of black shoe polish marks on clothing. Journal of the Forensic Science Society, 32, 237–244.

    Article  Google Scholar 

  • Cooper, G. (2013). The indirect transfer of glass fragments to a jacket and their subsequent persistence. Science and Justice, 53, 166–170.

    Article  PubMed  Google Scholar 

  • Coyle, T., Larkin, A., Smith, K., Mayo, S., Chan, A., & Hunt, N. (2004). Fibre mapping—A case study. Science and Justice, 44(3), 179–186.

    Article  PubMed  Google Scholar 

  • Dabdoub, G., & Severin, P. (1989). The identification of domestic and foreign automobile manufacturers through body primer characterization. Journal of Forensic Sciences, 34(6), 1395–1404.

    Article  Google Scholar 

  • Dachs, J., McNaught, J. J., & Robertson, J. (2003). The persistence of human scalp hair on clothing fabrics. Forensic Science International, 138, 27–36.

    Article  PubMed  Google Scholar 

  • Deadman, H. (1984, March). Fibre evidence and the Wayne Williams trial, Part 1. FBI Law Enforcement Bulletin, 13–20.

    Google Scholar 

  • DeGaetano, D. H., Kempton, J. B., & Rowe, W. F. (1992). Fungal tunneling of hair from a buried body. Journal of Forensic Sciences, 37(4), 1048–1054.

    Article  PubMed  Google Scholar 

  • DuPont. (1974). Properties of industrial filament yarns of Kevlar aramid fiber for tires and mechanical rubber goods. Bulletin K-1, Du Pont de Nemours.

    Google Scholar 

  • ENFSI. (2001). The manual of best practice for the forensic examination of fibres. European Fibres Group.

    Google Scholar 

  • ENFSI. (2015). Working groups. European Network of Forensic Science Institutes. Retrieved November 12, 2015, from http://www.enfsi.eu/about-enfsi/structure/working-groups

  • Evett, I. W. (1993). Establishing the evidential value of a small quantity of material found at a crime scene. Journal of the Forensic Science Society, 33, 83–86.

    Article  Google Scholar 

  • Faber, N. M., Sjerps, M., Leijenhorst, H., & Malijaars, S. E. (1999). Determining the optimal sample size in forensic casework—With application to fibres. Science and Justice, 39(2), 113–122.

    Article  Google Scholar 

  • Gaudette, B. D., & Tessarolo, A. A. (1987). Secondary transfer of human scalp hair. Journal of Forensic Sciences, 32(5), 1241–1253.

    Article  Google Scholar 

  • Gordon, A., & Coulson, S. (2004). The evidential value of cosmetic foundation smears in forensic casework. Journal of the Forensic Science Society, 49(6), 1–9.

    Article  Google Scholar 

  • Gothard, J. A. (1976). Evaluation of automobile paint flakes as evidence. Journal of Forensic Sciences, 21(3), 636–641.

    Article  PubMed  Google Scholar 

  • Graves, W. (1979). A mineralogical soil classification technique for the forensic scientist. Journal of Forensic Sciences, 24, 323–338.

    Article  Google Scholar 

  • Grayson, J. (1984). Encyclopedia of textile, fibers and non woven fabrics. New York: Wiley.

    Google Scholar 

  • Grieve, M. C. (1987). Glitter particles—An unusual source of trace evidence? Journal of the Forensic Science Society, 27, 405–412.

    Article  Google Scholar 

  • Grieve, M. C., & Biermann, T. (1997). The population of coloured textile fibres on outdoor surfaces. Science and Justice, 37(4), 231–239.

    Article  Google Scholar 

  • Grieve, M. C., Dunlop, J., & Haddock, P. S. (1988). An assessment of the value of blue, red and black cotton fibres in forensic science investigations. Journal of Forensic Sciences, 33, 1332–1334.

    Article  Google Scholar 

  • Grieve, M. C., Dunlop, J., & Haddock, P. S. (1989). Transfer experiments with acrylic fibres. Forensic Science International, 40, 267–277.

    Article  Google Scholar 

  • Grieve, M. C., & Wiggins, K. G. (2001). Fibers under fire: Suggestions for improving their use to provide forensic evidence. Journal of Forensic Sciences, 46(4), 835–843.

    Article  PubMed  Google Scholar 

  • Gross, S., Igowsky, K., & Pangerl, E. (2010). Glitter as a source of trace evidence. Journal of the American Association of Trace Evidence Examiners, 1(1), 62–72.

    Google Scholar 

  • Gruza, E., & Tomaszewski, T. (1990). Preservation and use of traces revealed during the search of the scene of burglary. Forensic Science International, 46, 153–158.

    Article  Google Scholar 

  • Hair. (2014). The Oxford English dictionary (online).

    Google Scholar 

  • Hall, A. J. (1975). The standard handbook of textiles (8th ed.). London: Butterworths.

    Google Scholar 

  • Harrison, P. H., Lambert, J. A., & Zoro, J. A. (1985). A survey of glass fragments recovered from clothing of persons suspected of involvement in crime. Forensic Science International, 27, 171–187.

    Article  Google Scholar 

  • Heuse, O., & Adolf, F. P. (1982). Non-destructive identification of textile fibres by interference microscopy. Journal of the Forensic Science Society, 22, 103–122.

    Article  PubMed  Google Scholar 

  • Houck, M. M. (2001). Mute witnesses: Trace evidence. London: Academic.

    Google Scholar 

  • Ishiwatari, A. (1999). An easy identification chart for major rock-forming minerals by polarizing microscope. Journal of Geological Society of Japan, 105(2), 156–158.

    Article  Google Scholar 

  • Jackson, G. P., An, Y., Konstantynova, K., & Rashaid, A. H. B. (2015). Biometrics from the carbon isotope ratio analysis of amino acids in human hair. Science and Justice, 55(1), 43–50.

    Article  PubMed  Google Scholar 

  • Jackson, F., Bunford, J., Roux, C., & Maynard, P. (2014). Surveys of vehicle paints to stationary objects in Sydney, Australia. In 20th World Meeting of the International Association of Forensic Sciences (IAFS), Seoul, South Korea.

    Google Scholar 

  • Jackson, G., & Cook, R. (1986). The significance of fibres found on car seats. Forensic Science International, 32(4), 275–281.

    Article  Google Scholar 

  • Jackson, A., & Gwinnett, C. (2013). Easylift: A novel tape lifting system. Interfaces, 73, 22–23.

    Google Scholar 

  • Jackson, F., Maynard, P., Cavanagh-Steer, K., Dusting, T., & Roux, C. (2013). A survey of glass found on the headwear and head hair of a random population vs. people working with glass. Forensic Science International, 226, 125–131.

    Article  PubMed  Google Scholar 

  • Janes, R., McCann, M., & Robinson, P. (1999). Fundamentals and applications of light microscopy (Microscopy course handbook). Massachusetts: Wellesley.

    Google Scholar 

  • Keagy, R. L. (1983). Examinations of cosmetic smudges including transesterification and gas chromatographic/mass spectrometric analysis. Journal of Forensic Sciences, 28(3), 623–631.

    Article  Google Scholar 

  • Kelly, E., & Griffin, R. M. E. (1998). A target fibre study on seats in public houses. Science and Justice, 37, 39–44.

    Article  Google Scholar 

  • Lamb, P., & Tucker, L. G. (1994). A study of the probative value of Afro-Caribbean hair comparisons. Journal of the Forensic Science Society, 34, 177–179.

    Article  PubMed  Google Scholar 

  • Lark, R. M., & Rawlins, B. G. (2008). Can we predict the provenance of a soil sample for forensic purposes by reference to a spatial database? European Journal of Soil Science, 59, 1000–1006.

    Article  Google Scholar 

  • Lindbo, D. (2015). Soil types. Soil Science Society of America. Retrieved October 3, 2015, from https://www.soils.org/discover-soils/soil-basics/soil-types

  • Locard, E. (1930). The analysis of dust traces: Part 1. American Journal of Police Science, 1, 276–298.

    Article  Google Scholar 

  • Lowrie, C. N., & Jackson, G. (1994). Secondary transfer of fibres. Forensic Science International, 64(2-3), 73–82.

    Article  Google Scholar 

  • Marumo, Y., & Sugita, R. (1996). Validity of colour examination for forensic soil identification. Forensic Science International, 83, 201–210.

    Article  Google Scholar 

  • McCrone, W. C. (1994). Polarized light microscopy in conservation: A personal perspective. Journal of the American Institute for Conservation, 33(2), 101–114.

    Article  Google Scholar 

  • McDermott, S. D. (1994). Metal particles as evidence in criminal cases. Journal of Forensic Sciences, 39(6), 1552–1559.

    Article  Google Scholar 

  • McJunkins, S. P., & Thornton, J. I. (1973). Glass fracture analysis. A review. Forensic Science, 2, 1–27.

    Article  PubMed  Google Scholar 

  • McKenna, F. J., & Sherwin, J. C. (1975). A simple and effective method for collecting contact evidence. Journal of the Forensic Science Society, 15, 227.

    Article  Google Scholar 

  • Millette, J. R., & Few, P. (2001). Sample collection procedures for microscopical examination of particulate surface contaminants. Microscope, 43(1), 21–27.

    Google Scholar 

  • Min, J., Kim, K., Heo, S., & Jang, Y. (2014). Multi-element and stable isotope analyses in hair for forensic purpose: What kind of information can we get from hair? In 20th World Meeting of the International Association of Forensic Sciences (IAFS), Seoul, South Korea.

    Google Scholar 

  • Morgan, S. L., Nieuwland, A. A., Mubarak, C. R., Hendrix, J. E., Enlow, E. M., & Vasser, B. J. (2010). Forensic discrimination of dyed textile fibers using UV-VIS and fluorescence microspectrophotometry. In Proceedings of the European Fibres Group Annual Meeting, Prague, Czechoslovakia.

    Google Scholar 

  • Munroe, R. (1995). Forensic geology. Royal Canadian Mounted Police Gazette, 57(3), 10–17.

    Google Scholar 

  • Munsell Colour Company. (1954). Munsell soil colour charts and book of colour. Baltimore: Munsell Colour Company.

    Google Scholar 

  • Nehse, K. (2014). Fibre evidence and evaluation of findings: The benefits of mapping. In 20th World Meeting of the International Association of Forensic Sciences (IAFS), Seoul, South Korea.

    Google Scholar 

  • Ojena, S. M., & De Forest, P. R. (1972). Precise refractive index determination by the immersion method, using phase contrast microscopy and the Mettler hot-stage. Journal of the Forensic Science Society, 12, 315–329.

    Article  PubMed  Google Scholar 

  • Palenik, S. (2000). Dust. In Encyclopedia of forensic science. London: Academic.

    Google Scholar 

  • Palenik, S. (2004). Analytical techniques: Microscopy. In Encyclopedia of forensic sciences (pp. 161–166). London: Academic.

    Google Scholar 

  • Palenik, S. (2011). Microscopic trace evidence: The overlooked clue. NFSTC Projects. Retrieved October 5, 2014, from http://projects.nfstc.org/trace/2011/presentations/Palenik-Overlooked-Clue.pdf

  • Palmer, R. (2014). Fibres under fire: 10 years on—What has changed? In Chartered Society of Forensic Sciences Annual Conference: The Changing Face and Pace of Trace Evidence, Leicester, UK.

    Google Scholar 

  • Palmer, R., & Chinherende, V. (1996). A target fiber study using cinema and car seats as recipient items. Journal of the Forensic Science Society, 41(5), 802–803.

    Google Scholar 

  • Pangerl, E., & Igowsky, K. (2007). Changes in human head hairs exposed to heat. NFSTC Projects. Retrieved October 5, 2015, from http://projects.nfstc.org/trace/docs/Trace%20Presentations%20CD-2/Pangerl.pdf

  • Parybyk, A. E., & Lokan, R. J. (1985). A study of the numerical distribution of fibres transferred from blended fabrics. Journal of the Forensic Science Society, 61, 26.

    Google Scholar 

  • Petraco, N. (1985). The occurrence of trace evidence in one examiner’s casework. Journal of Forensic Sciences, 30(2), 485–493.

    Article  Google Scholar 

  • Petraco, N. (1987). A simple trace evidence trap for the collection of vacuum sweepings. Journal of Forensic Sciences, 32(5), 1422–1425.

    Article  Google Scholar 

  • Petraco, N., & Kubic, T. A. (2000). A density gradient technique for use in forensic soil analysis. Journal of Forensic Science, 45(4), 872–873.

    Article  Google Scholar 

  • Petraco, N., Kubic, T. A., & Faber, L. (2007). The microscopic analysis of World Trade Center dust. NFSTC Projects. Retrieved October 14, 2014, from http://projects.nfstc.org/trace/docs/Trace%20Presentations%20CD-2/Petraco.pdf

  • Petraco, N., Kubic, T. A., & Petraco, N. D. K. (2008). Case studies in forensic soil examinations. Forensic Science International, 178, 23–27.

    Article  Google Scholar 

  • Pounds, C. A., & Smalldon, K. W. (1975). The transfer of fibres between clothing materials during simulated contacts and their persistence during wear, Part 1—Fibres transference. Journal of the Forensic Science Society, 15, 17–27.

    Article  PubMed  Google Scholar 

  • Prahlow, J. A., Lantz, P. E., Cox-Jones, K., Rao, P. N., & Pettenati, M. J. (1996). Gender identification of human hair using fluorescence in situ hybridization. Journal of Forensic Science, 41(6), 1035–1037.

    Article  Google Scholar 

  • Pye, K., & Blott, S. J. (2009). Development of a searchable major and trace element database for use in forensic soil comparisons. Science and Justice, 49, 170–181.

    Article  PubMed  Google Scholar 

  • Robertson, J. (1999). Forensic examination of hair (pp. 79–154). London: Taylor and Francis.

    Book  Google Scholar 

  • Robertson, J., Brooks, E., Boehme, A., Robertson, K., & McNevin, D. (2007). Recent trends in the forensic examination of hairs. In Global forensic science today (4th ed.).

    Google Scholar 

  • Robertson, J., & Grieve, M. (1999). Forensic examination of fibres. London: Taylor and Francis.

    Google Scholar 

  • Robertson, J., & Roux, C. (2010). Trace evidence: Here today, gone tomorrow? Science and Justice, 50, 18–22.

    Article  PubMed  Google Scholar 

  • Roe, G. M. (1980). The detection of cosmetic treatments on hair. Cosmetics and Toiletries, 95, 40–44.

    Google Scholar 

  • Roux, C., Beavis, A., Benson, S., Braybon, E., Dawson, M., Doble, P., et al. (2007). Forensic science in the 21st century—Will trace evidence ever reach the next level? In Proceedings of the Trace Evidence Symposium, August, Florida, USA.

    Google Scholar 

  • Roux, C., & Robertson, J. (2000). Fibres—Types. In Encyclopedia of forensic science (pp. 838–854). London: Academic.

    Google Scholar 

  • Roux, C., & Robertson, J. (2004). Fibres—Significance. In Encyclopedia of forensic sciences (pp. 829–834). London: Academic.

    Google Scholar 

  • Rowell, D. L. (1994). Soil science: Methods and applications. Harlow, UK: Addison Wesley Longman.

    Google Scholar 

  • Sandiford, A. (2012). Palynology, pollen and spores, partners in crime: What, why and how? In D. W. Hall & J. H. Byrd (Eds.), Forensic botany: A practical guide. London: Wiley-Blackwell.

    Google Scholar 

  • Scott, K. R., Morgan, R. M., Jones, V. J., & Cameron, N. G. (2014). The transferability of diatoms to clothing and the methods appropriate for their collection and analysis in forensic geoscience. Forensic Science International, 241, 127–137.

    Article  PubMed  Google Scholar 

  • Sermier, M. F., Massonnet, G., Buzzini, P., Fortini, A., Gason, F., De Wael, K., et al. (2005). A comparison of efficiency of manual and automatic fibres search with the Maxcan fibre finder. Forensic Science International, 160, 102–108.

    Article  Google Scholar 

  • Shun Kai Bong, W., Nakai, I., Furuya, S., Suzuki, H., Abe, Y., Osaka, K., et al. (2012). Development of heavy mineral and heavy element database of soil sediments in Japan using synchrotron radiation X-ray powder diffraction and high-energy (116KeV) X-ray fluorescence analysis. Forensic Science International, 220, 33–49.

    Article  Google Scholar 

  • Speers, S. J., Little, B. H., & Roy, M. (1994). Separation of acid, basic and dispersed dyes by a single-gradient elution reversed-phase high-performance liquid chromatography system. Journal of Chromatography, 674, 263–270.

    Article  Google Scholar 

  • Stoecklein, W., & Fujiwara, H. (1999). The examination of UV-absorbers in 2-coat metallic and non-metallic automotive paints. Science and Justice, 39(3), 188–195.

    Article  PubMed  Google Scholar 

  • Stoney, D. A., & Aitken, C. G. G. (1991). The use of statistics in forensic science. Upper Saddle River, NJ: Prentice Hall.

    Google Scholar 

  • Stuart, B. H. (2013). Forensic analytical techniques. London: Wiley.

    Google Scholar 

  • SWGMAT. (2004, July). Glass refractive index determination. Forensic Science Communications: Standards and Guidelines.

    Google Scholar 

  • Szewcow, R., Robertson, J., & Roux, C. P. (2011). The influence of front-loading and top-loading washing machines on the persistence, redistribution and secondary transfer of textile fibres during laundering. Australian Journal of Forensic Sciences, 43(4), 263–273.

    Article  Google Scholar 

  • Tafaro, J. T. (2000). Use of microscopic postmortem changes in anagen hair roots to associate questioned hairs with known hairs and reconstruct events in two murder cases. Journal of Forensic Sciences, 45, 495–499.

    Article  PubMed  Google Scholar 

  • Taupin, J. M. (2004). Forensic hair morphology comparison—A dying art or junk science? Science and Justice, 44(2), 95–100.

    Article  PubMed  Google Scholar 

  • Taylor, M. A. (1990). Technology of textile properties (3rd ed.). London: Forbes.

    Google Scholar 

  • Trotter, M., & Duggins, O. H. (1948). Age changes in head hair from birth to maturity: Index and size in hair of children. American Journal of Physical Anthropology, 6, 489–506.

    Article  PubMed  Google Scholar 

  • Trotter, M., & Duggins, O. H. (1950). Age changes in head hair from birth to maturity: Cuticular scale counts of hair in children. American Journal of Physical Anthropology, 8, 467–484.

    Article  PubMed  Google Scholar 

  • Valaskovic, G. A. (1991). Polarized light in multiple birefringent domains: A study of the Herzog effect. Microscope, 39, 269–286.

    Google Scholar 

  • Vantour, G., Poirier, A., & Widory, D. (2015). Tracking mobility using human hair: What can we learn from lead and strontium isotopes? Science and Justice, 55(1), 63–71.

    Article  Google Scholar 

  • Vernall, D. G. (1964). Study of the density of pigment granules in hair from four races of man. American Journal of Physical Anthropology, 21, 489–496.

    Article  Google Scholar 

  • Wheals, B. B., & Noble, W. (1974). Pyrolysis gas chromatographic examination of car paint flakes as an aid to vehicle characterization. Journal of the Forensic Science Society, 14, 23–32.

    Article  PubMed  Google Scholar 

  • Wiggins, K. G. (2001). Forensic textile fiber examination across the USA and Europe. Journal of Forensic Science, 46, 1303–1308.

    Article  Google Scholar 

  • Wiggins, K., & Allard, J. E. (1987). The evidential value of fabric car seats and car seat covers. Journal of the Forensic Science Society, 27, 93–101.

    Article  Google Scholar 

  • Wiggins, K., & Drummond, P. (2007). Identifying a suitable mounting medium for use in forensic fibre examination. Science and Justice, 47, 2–8.

    Article  PubMed  Google Scholar 

  • Wiggins, K., Emes, A., & Brackley, L. H. (2002). The transfer and persistence of small fragments of polyurethane foam onto clothing. Science and Justice, 42(2), 105–110.

    Article  Google Scholar 

  • Wiggins, K. G., Turner, Y. J., & Miles, J. H. (1999). The use of the foster and freeman Fx5 fibre finder in forensic textile examinations. Science and Justice, 39, 19–25.

    Article  PubMed  Google Scholar 

  • Willis, S. (2014). Is locard still relevant today? In Chartered Society of Forensic Sciences Annual Conference: The Changing Face and Pace of Trace Evidence, Leicester, UK.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claire Gwinnett .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gwinnett, C. (2016). The Use of Trace Evidence in Missing Persons Investigations. In: Morewitz, S., Sturdy Colls, C. (eds) Handbook of Missing Persons. Springer, Cham. https://doi.org/10.1007/978-3-319-40199-7_30

Download citation

Publish with us

Policies and ethics