Skip to main content

Trace DNA Profiling in Missing Persons Investigations

  • Chapter
  • First Online:
Handbook of Missing Persons

Abstract

The sources of sufficient quantities of DNA to provide profiles useful in assisting missing persons investigations have expanded over recent years due to improvements in DNA recovery and profiling methodologies. The collection and processing of trace samples should, however, only be contemplated when traditional high quantity and quality samples are not available. Whilst potentially useful in many situations, a trace sample may require application of alternative profiling methodologies, be less likely to provide a full profile, be more likely to be part of a mixed DNA sample that is difficult to deconvolute thus reducing match probabilities, and require greater care during collection and processing to limit DNA contamination risks and impacts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alonso, A., Martin, P., Albarrán, C., Garcia, P., Fernandez de Simon, L., Jesús Iturralde, M., et al. (2005). Challenges of DNA profiling in mass disaster investigations. Croatian Medical Journal, 46, 540–548.

    PubMed  Google Scholar 

  • Ballantyne, K. N., Keerl, V., Wollstein, A., Choi, Y., Zuniga, S. B., Ralf, A., et al. (2012). A new future of forensic Y-chromosome analysis: Rapidly mutating Y-STRs for differentiating male relatives and paternal lineages. Forensic Science International. Genetics, 6, 208–218.

    Article  PubMed  Google Scholar 

  • Ballantyne, K. N., Poy, A. L., & van Oorschot, R. A. H. (2013). Environmental DNA monitoring: Beware of the transition to more sensitive typing methodologies. Australian Journal of Forensic Sciences, 45, 323–340.

    Article  Google Scholar 

  • Benschop, C. C. G., van der Beek, C. P., Meiland, H. C., van Gorp, A. G. M., Westen, A. A., & Sijen, T. (2011). Low template STR typing: Effect of replicate number and consensus method on genotyping reliability and DNA database search results. Forensic Science International. Genetics, 5, 316–328.

    Article  PubMed  Google Scholar 

  • Biesecker, L. G., Bailey-wilson, J. E., Ballantyne, J., Baum, H., Bieber, F. R., Brenner, C., et al. (2005). DNA identifications after the 9/11 World Trade Center Attack. Science, 310, 1122–1123.

    Article  PubMed  Google Scholar 

  • Bradley, J. (2014). Krystal Beslanowitch Homicide Cold Case. MVACBLOG. Retrieved from http://mvacblog.com/2014/12/03/krystal-beslanowitch-homicide-cold-case.

  • Brenner, C. H. (2006). Some mathematical problems in the DNA identification of victims in the 2004 tsunami and similar mass fatalities. Forensic Science International, 157, 172–180.

    Article  PubMed  Google Scholar 

  • Brenner, C. H., & Weir, B. S. (2003). Issues and strategies in the DNA identification of World Trade Center victims. Theoretical Population Biology, 63, 173–178.

    Article  PubMed  Google Scholar 

  • Budowle, B., Ge, J., Chakraborty, R., & Gill-King, H. (2011). Use of prior odds for missing persons identifications. Investigative Genetics, 2, 1–6.

    Article  Google Scholar 

  • De Bruin, K. G., Verheij, S. M., Veenhoven, M., & Sijen, T. (2012). Comparison of stubbing and the double swab method for collecting offender epithelial material from a victim’s skin. Forensic Science International. Genetics, 6, 219–223.

    Article  PubMed  Google Scholar 

  • Di Nunno, N., Melato, M., Vimercati, A., Di Nunno, C., Costantinides, F., Vecchiotti, C., et al. (2003). DNA identification of sperm cells collected and sorted by flow cytometry. American Journal of Forensic Medicine and Pathology, 24, 254–270.

    Article  PubMed  Google Scholar 

  • Edson, S. M., Ross, J. P., Coble, M. D., Parson, T. J., & Barritt, S. M. (2004). Naming the dead-confronting the realities of the rapid identification of degraded skeletal remains. Forensic Science Review, 16, 63–88.

    PubMed  Google Scholar 

  • Garrett, A. D., Patlak, D. J., Gunn, L. E., Brodeur, A. N., & Grgicak, C. M. (2014). Exploring the potential of a wet-vacuum collection system for DNA recovery. Journal of Forensic Identification, 64, 429–448.

    Google Scholar 

  • Goodwin, W., Ballard, D., Simpson, K., Thacker, C., Syndercombe Court, D., & Gow, J. (2004). Case study: Paternity testing—When 21 loci are not enough. In International Congress Series, pp. 460–462. Elsevier.

    Google Scholar 

  • Goray, M., van Oorschot, R. A. H., & Mitchell, J. R. (2012). DNA transfer within forensic exhibit packaging: Potential for DNA loss and relocation. Forensic Science International. Genetics, 6, 158–166.

    Article  PubMed  Google Scholar 

  • Harbison, S., Fallow, M., & Bushell, D. (2008). An analysis of the success rate of 908 trace DNA samples submitted to the Crime Sample Database Unit in New Zealand. Australian Journal of Forensic Sciences, 40, 49–53.

    Article  Google Scholar 

  • Hartman, D., Benton, L., Morenos, L., Beyer, J., Spiden, M., & Stock, A. (2011). Examples of kinship analysis where Profiler Plusâ„¢ was not discriminatory enough for the identification of victims using DNA identification. Forensic Science International, 205, 64–68.

    Article  PubMed  Google Scholar 

  • Kayser, M. (2007). Uni-parental markers in human identity testing including forensic DNA analysis. Biotechniques, 43, S16–S21.

    Article  Google Scholar 

  • Kline, M. C., Vallone, P. M., Redman, J. W., Duewer, D. L., Calloway, C. D., & Butler, J. M. (2005). Mitochondrial DNA typing screens with control region and coding region SNPs. Journal of Forensic Sciences, 50, 377–385.

    PubMed  Google Scholar 

  • M-Vac Systems Inc. (2013). M-Vac systems DNA collection device helps solve 18 yr old Beslanowitch Case. Retrieved from http://www.m-vac.com/news/press-releases/m-vac-systems-DNA-collection-device-helps-solve-18-yr-old-beslanowitch-case

  • Ottaviani, E., Vernarecci, S., Asili, P., Agostino, A., & Montagna, P. (2015). Preliminary assessment of the prototype Yfiler® Plus kit in a population study of Northern Italian males. International Journal of Legal Medicine, 129, 729–730.

    Article  PubMed  Google Scholar 

  • Pang, B. C. M., & Cheung, B. K. K. (2007). Double swab technique for collecting touched evidence. Legal Medicine, 9, 181–184.

    Article  PubMed  Google Scholar 

  • Poy, A. L., & van Oorschot, R. A. (2006). Trace DNA presence, origin, and transfer within a forensic biology laboratory and its potential effect on casework. Journal of Forensic Identification, 56, 558.

    Google Scholar 

  • Prinz, M., Carracedo, A., Mayr, W. R., Morling, N., Parsons, T. J., Sajantila, A., et al. (2007). DNA Commission of the International Society for Forensic Genetics (ISFG): Recommendations regarding the role of forensic genetics for disaster victim identification (DVI). Forensic Science International: Genetics, 1, 3–12.

    Article  Google Scholar 

  • Purps, J., Siegert, S., Willuweit, S., Nagy, M., Alves, C., Salazar, R., et al. (2014). A global analysis of Y-chromosomal haplotype diversity for 23 STR loci. Forensic Science International. Genetics, 12, 12–23.

    Article  PubMed  PubMed Central  Google Scholar 

  • Raymond, J. J., van Oorschot, R. A., Gunn, P. R., Walsh, S. J., & Roux, C. (2009). Trace DNA success rates relating to volume crime offences. Forensic Science International: Genetics Supplement Series, 2, 136–137.

    Google Scholar 

  • Roewer, L. (2009). Y chromosome STR typing in crime casework. Forensic Science, Medicine, and Pathology, 5, 77–84.

    Article  PubMed  Google Scholar 

  • Sanchez, J. J., Phillips, C., Børsting, C., Balogh, K., Bogus, M., Fondevila, M., et al. (2006). A multiplex assay with 52 single nucleotide polymorphisms for human identification. Electrophoresis, 27, 1713–1724.

    Article  PubMed  Google Scholar 

  • Schoell, W. M. J., Klintschar, M., Mirhashemi, R., & Pertl, B. (1999). Separation of sperm and vaginal cells with flow cytometry for DNA typing after sexual assault. Obstetrics & Gynecolology, 94, 623–627.

    Google Scholar 

  • Szkuta, B., Harvey, M. L., Ballantyne, K. N., & van Oorschot, R. A. H. (2013). The potential transfer of trace DNA via high risk vectors during exhibit examination. Forensic Science International: Genetics Supplement Series, 4, e55–e56.

    Google Scholar 

  • Taylor, D., Bright, J.-A., & Buckleton, J. (2013). The interpretation of single source and mixed DNA profiles. Forensic Science International. Genetics, 7, 516–528.

    Article  PubMed  Google Scholar 

  • van Dongen, C. J., Slooten, K., Slagter, M., Burgers, W., & Wiegerinck, W. (2011). Bonaparte: Application of new software for missing persons program. Forensic Science International: Genetics Supplement Series, 3, e119–e120.

    Google Scholar 

  • van Oorschot, R. A., Ballantyne, K. N., & Mitchell, R. J. (2010). Forensic trace DNA: A review. Investigative Genetics, 1, 14.

    Article  PubMed  PubMed Central  Google Scholar 

  • van Oorschot, R. A. H., Glavich, G., & Mitchell, R. J. (2014). Persistence of DNA deposited by the original user on objects after subsequent use by a second person. Forensic Science International. Genetics, 8, 219–225.

    Article  PubMed  Google Scholar 

  • van Oorschot, R. A. H., Treadwell, S., Beaurepaire, J., Holding, N. L., & Mitchell, R. J. (2005). Beware of the possibility of fingerprinting techniques transferring DNA. Journal of Forensic Sciences, 50, 1–6.

    Article  Google Scholar 

  • Vandewoestyne, M., & Deforce, D. (2010). Laser capture microdissection in forensic research: A review. International Journal of Legal Medicine, 124, 513–521.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vandewoestyne, M., & Deforce, D. (2011). Laser capture microdissection for forensic DNA analysis. Forensic Science International: Genetics Supplement Series, 3, e117–e118.

    Google Scholar 

  • Verdon, T. J., Mitchell, R. J., Chen, W., Xiao, K., & van Oorschot, R. A. H. (2015). FACS separation of non-compromised forensically relevant biological mixtures. Forensic Science International. Genetics, 14, 194–200.

    Article  PubMed  Google Scholar 

  • Verdon, T. J., Mitchell, R. J., & van Oorschot, R. A. H. (2014a). Swabs as DNA collection devices for sampling different biological materials from different substrates. Journal of Forensic Sciences, 59, 1080–1089.

    Article  PubMed  Google Scholar 

  • Verdon, T. J., Mitchell, R. J., & van Oorschot, R. A. H. (2014b). Evaluation of tapelifting as a collection method for touch DNA. Forensic Science International. Genetics, 8, 179–186.

    Article  PubMed  Google Scholar 

  • Wright, K., Mundorff, A., Chaseling, J., Forrest, A., Maguire, C., & Crane, D. I. (2015). A new disaster victim identification management strategy targeting ‘near identification-threshold’ cases: Experiences from the Boxing Day tsunami. Forensic Science International, 250, 91–97.

    Article  PubMed  Google Scholar 

  • Wright, K., Mundorff, A., Chaseling, J., Maguire, C., & Crane, D. I. (2015). An evaluation of the Thai tsunami victim identification DNA operation. Forensic Science Policy & Management: An International Journal, 6, 69–78.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland A. H. van Oorschot Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

van Oorschot, R.A.H., Szkuta, B., Verdon, T.J., Mitchell, R.J., Ballantyne, K.N. (2016). Trace DNA Profiling in Missing Persons Investigations. In: Morewitz, S., Sturdy Colls, C. (eds) Handbook of Missing Persons. Springer, Cham. https://doi.org/10.1007/978-3-319-40199-7_23

Download citation

Publish with us

Policies and ethics