Skip to main content

Discretization in Numerical Weather Prediction: A Modular Approach to Investigate Spectral and Local SISL Methods

  • Conference paper
  • First Online:
Book cover Mathematical Problems in Meteorological Modelling

Part of the book series: Mathematics in Industry ((TECMI,volume 24))

Abstract

An overview of some spatial and temporal discretization methods used in NWP is given. The authors focus on the spectral semi-implicit semi-Lagrangian scheme, which was and still is one of the most successful schemes. A Z-grid approach with an identical timestep organization as the current semi-implicit semi-Lagrangian schemes is proposed. This provides a testbed to undertake comparison studies between spectral and local spatial discretization schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The wavenumbers are related to the wavelengths in the x and y-direction λ x and λ y by \(k = \frac{2\pi } {\lambda _{x}}\) and \(l = \frac{2\pi } {\lambda _{y}}\).

References

  1. ALADIN International Team: The ALADIN project: mesoscale modelling seen as a basic tool for weather forecasting and atmospheric research. WMO Bull. 46, 317–324 (1997)

    Google Scholar 

  2. Arakawa, A.: Adjustment mechanisms in atmospheric models. J. Meteorol. Soc. Jpn. 75B, 155–179 (1997)

    Google Scholar 

  3. Bourke, W.: An efficient, one-level, primitive-equation spectral model. Mon. Weather Rev. 100, 683–691 (1972)

    Article  Google Scholar 

  4. Boyd, J.P.: Chebyshev and Fourier Spectral Methods, p. 688. Dover, New York (2001)

    Google Scholar 

  5. Brown, A., Milton, S., Cullen, M., Golding, B., Mitchell, J., Shelly, A.: Unified modeling and prediction of weather and climate. A 25-year journey. Bull. Am. Meteorol. Soc. 93, 1865–1877 (2012)

    Google Scholar 

  6. Caluwaerts, S., Degrauwe, D., Termonia, P., Voitus, F., Beńard, P., Geleyn, J.F.: Importance of temporal symmetry in spatial discretization for geostrophic adjustment in semi-implicit Z-grid schemes. Q. J. R. Meteorol. Soc. 141, 128–138 (2015)

    Article  Google Scholar 

  7. Charney, J.G., Fjörtoft, R., Von Neumann, J.: Numerical integration of the barotropic vorticity equation. Tellus 2, 237–254 (1950)

    Article  MathSciNet  Google Scholar 

  8. Coiffier, J.: Fundamentals of Numerical Weather Prediction, p. 340. Cambridge University Press, Cambridge (2011)

    Google Scholar 

  9. Côté, J., Staniforth, A.: An accurate and efficient finite-element global model of the shallow water equations. Mon. Weather Rev. 118, 2707–2717 (1990)

    Article  Google Scholar 

  10. Côté, J., Gravel, S., Méthot, A., Patoine, A., Roch, M., Staniforth, A.: The operational CMC-MRB global environmental multiscale (GEM) model. Part 1: design considerations and formulation. Mon. Weather Rev. 126, 1373–1395 (1998)

    Google Scholar 

  11. Cotter, C.J., Shipton, J.: Mixed finite elements for numerical weather prediction. J. Comput. Phys. 231, 7076–7091 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Courant, R., Friedrichs, K.O., Lewy, H..: Uber die Partielen Differenzengleichungen der Mathematischen Physik. Math. Ann. 100, 32–74 (1928)

    Article  MathSciNet  MATH  Google Scholar 

  13. Davies, T., Staniforth, A., Wood, N., Thuburn, J.: Validity of anelastic and other equation sets as inferred from normal-mode analysis. Q. J. R. Meteorol. Soc. 129, 2761–2775 (2003)

    Article  Google Scholar 

  14. Davies, T., Cullen, M., Malcolm, A., Mawson, M., Staniforth, A., White, A., Wood, N.: A new dynamical core for the Met Office’s global and regional modelling of the atmosphere. Q. J. R. Meteorol. Soc. 131, 1759–1782 (2005)

    Article  Google Scholar 

  15. Dennis, J., Edwards, J., Evans, K., Guba, O., Lauritzen, P., Mirin, A., St-Cyr, A., Taylor, M., Worley, P.: CAM-SE: A scalable spectral element dynamical core for the community atmosphere model. Int. J. High Perform. Appl. 26, 74–89 (2011)

    Article  Google Scholar 

  16. Durran, D.R.: Numerical Methods for Fluid Dynamics with applications to Geophysics, p. 516. Springer, Berlin (2010)

    Google Scholar 

  17. Durran, D., Blossey, P.: Implicit-explicit multistep methods for fast-wave-slow-wave problems. Mon. Weather Rev. 140, 1307–1325 (2012)

    Article  Google Scholar 

  18. Eliasen, E., Machenhauer, B., Rasmussen E.: On a numerical method for integration of the hydrodynamical equations with a spectral representation of the horizontal fields. Report no 2. Institut for Teoretisk Meteorologi, University of Copenhagen (1970)

    Google Scholar 

  19. Fjortoft, R.: On a numerical method of integrating the barotropic vorticity equation. Tellus 4, 179–194 (1952)

    Google Scholar 

  20. Godunov, S.K.: A difference scheme for numerical computation of discontinuous solutions of equations in fluid dynamics. Mat. Sb. 47, 271 (1959)

    Google Scholar 

  21. Holton, J.R.: An Introduction to Dynamic Meteorology, p. 535. Elsevier, Amsterdam/Academic, New York (2004)

    Google Scholar 

  22. Hortal, M.: The development and testing of a new two-time level semi-Lagrangian scheme (SETTLS) in the ECMWF forecast model. Q. J. R. Meteorol. Soc. 128, 1671–1687 (2002)

    Article  Google Scholar 

  23. Hortal, M., Simmons, A.J.: Use of reduced Gaussian grids in spectral models. Mon. Weather Rev. 119, 1057–1074 (1991)

    Article  Google Scholar 

  24. Hurrell, J., Meehl, G., Bader, D., Delworth, T., Kirtman, B., Wielicki, B.: A unified modeling approach to climate system prediction. Bull. Am. Meteorol. Soc. 90, 1819–1832 (2009)

    Article  Google Scholar 

  25. Kwizak, M., Robert, A.: A semi-implicit scheme for grid point atmospheric models of the primitive equations. Mon. Weather Rev. 99, 32–36 (1971)

    Article  Google Scholar 

  26. Lin, S.: A vertically Lagrangian finite-volume dynamical core for global models. Mon. Weather Rev. 132, 2293–2307 (2004)

    Article  Google Scholar 

  27. Majewski, D., Liermann, D., Prohl, P., Ritter, B., Buchhold, M., Hanisch, T., Paul G., Wergen W., Baumgardner, J.: The operational global isocahedral-hexagonal gridpoint model GME: description and high-resolution tests. Mon. Weather Rev. 130, 319–338 (2002)

    Article  Google Scholar 

  28. Mesinger, F., Arakawa, A.: Numerical methods used in atmospheric models. GARP Publications, Series No. 17 1. World Meteorological Organisation, Geneva (1976)

    Google Scholar 

  29. Müller, E., Scheichl R.: Massively parallel solvers for elliptic partial differential equations in numerical weather and climate prediction. Q. J. R. Meteorol. Soc. 140, 2605–2624 (2014)

    Article  Google Scholar 

  30. Nair, D., Thomas, S., Loft, R.: A discontinuous Galerkin global shallow water model. Mon. Weather Rev. 133, 876–888 (2005)

    Article  Google Scholar 

  31. Neta, B.,Williams, R.: Rossby wave frequencies and group velocities for finite element and finite difference approximations to the vorticity-divergence and the primitive forms of the shallow water equations. Mon. Weather Rev. 117, 1439–1457 (1989)

    Article  Google Scholar 

  32. Notay, Y., Napov, A.: A massively parallel solver for discrete Poisson-like problems. J. Comput. Phys. 281, 237–250 (2015)

    Article  MathSciNet  Google Scholar 

  33. Orszag, S.A.: Transform method for calculation of vector-coupled sums: application to the spectral form of the vorticity equation. J. Atmos. Sci. 27, 890–895 (1970)

    Article  Google Scholar 

  34. Outline of the operational numerical weather prediction at the Japan Meteorological Agency. http://www.jma.go.jp/jma/jma-eng/jma-center/nwp/outline-nwp/index.htm (2007)

  35. Qaddouri, A., Lee, V.: The Canadian global environmental multiscale model on the Yin-Yang grid system. Q. J. R. Meteorol. Soc. 137, 1913–1926 (2011)

    Article  Google Scholar 

  36. Richardson, L.F.: Weather Prediction by Numerical Process, p. 236. Cambridge University Press, Cambridge (1922)

    Google Scholar 

  37. Randall, D.: Geostrophic adjustment and the finite-difference shallow water equations. Mon. Weather Rev. 122, 1371–1377 (1994)

    Article  Google Scholar 

  38. Ritchie, H.: Application of the semi-Lagrangian method to a spectral model of the shallow water equations. Mon. Weather Rev. 116, 1587–1598 (1988)

    Article  Google Scholar 

  39. Ritchie, H.: Implementation of the semi-Lagrangian method in a high resolution version of the ECMWF forecast model. Mon. Weather Rev. 123, 489–514 (1994)

    Article  Google Scholar 

  40. Ritchie, H., Beaudoin, C.: Approximations and Sensitivity Experiments with a Baroclinic Semi-Lagrangian Spectral Model. Mon. Weather Rev. 122, 2391–2399 (1994)

    Article  Google Scholar 

  41. Robert, A.: The integration of a low order spectral form of the primitive meteorological equations. J. Meteorol. Soc. Jpn. 44, 237–244 (1966)

    Google Scholar 

  42. Robert, A.: The integration of a spectral model of the atmosphere by the implicit method. Proc.of WMO/IUGG Symp. on NWP (1969)

    Google Scholar 

  43. Robert, A.: A stable numerical integration scheme for the primitive meteorological equations. Atmosphere-Ocean 19, 35–46 (1981)

    Article  Google Scholar 

  44. Sawyer, J.S.: A semi-Lagrangian method of solving the vorticity advection equation. Tellus 4, 336–342 (1963)

    Article  Google Scholar 

  45. Simmons, A., Hoskins B., Burridge, D.: Stability of the semi-implicit method of time integration. Mon. Weather Rev. 106, 405–412 (1978)

    Article  Google Scholar 

  46. Staniforth, A., Mitchell, H.: A semi-implicit finite-element barotropic model. Mon. Weather Rev. 105, 154–169 (1977)

    Article  Google Scholar 

  47. Staniforth, A., Temperton, C.: Semi-implicit semi-Lagrangian integration schemes for a barotropic finite-element regional model. Mon. Weather Rev. 114, 2078–2090 (1986)

    Article  Google Scholar 

  48. Staniforth, A., Thuburn, J.: Horizontal grids for global weather and climate prediction models: a review. Q. J. R. Meteorol. Soc. 138, 1–26 (2012)

    Article  Google Scholar 

  49. Temperton, C., Staniforth, A.: An efficient two-time level semi-Lagrangian semi-implicit integration scheme. Q. J. R. Meteorol. Soc. 113, 1025–1039 (1987)

    Article  Google Scholar 

  50. Temperton, C.: On scalar and vector transform methods for global spectral models. Mon. Weather Rev. 119, 1303–1307 (1991)

    Article  Google Scholar 

  51. Temperton, C., Hortal, M., Simmons, A.: A two-time-level semi-Lagrangian global spectral model. Q. J. R. Meteorol. Soc. 127, 111–127 (2001)

    Article  Google Scholar 

  52. Termonia, P., Hamdi, R.: Stability and accuracy of the physics-dynamics coupling in spectral models. Q. J. R. Meteorol. Soc. 133, 1589–1604 (2007)

    Google Scholar 

  53. Thuburn, J., Staniforth, A.: Conservation and linear Rossby mode dispersion on the spherical C-grid. Mon. Weather Rev. 132, 641–653 (2004)

    Article  Google Scholar 

  54. Tolstykh, M.: Vorticity-divergence semi-Lagrangian shallow water model of the sphere based on compact finite differences. J. Comput. Phys. 179, 180–200 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  55. Tolstykh, M., Shashkin, V.: Vorticity-divergence mass-conserving semi-Lagrangian shallow-water model using the reduced grid on the sphere. J. Comput. Phys. 231, 4205–4233 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  56. Wang, H., Halpern, P., Douglas, J., Dupont, T.: Numerical solutions of the one-dimensional primitive equations using Galerkin approximations with localized basis functions. Mon. Weather Rev. 100, 738–746 (1972)

    Article  Google Scholar 

  57. Wedi, N.: Increasing horizontal resolution in numerical weather prediction and climate simulations: illusion or panacea. Philos. Trans. R. Soc. 372, 1–12 (2014)

    Article  MathSciNet  Google Scholar 

  58. Williams, R.T.: On the formulation of finite-element prediction models. Mon. Weather Rev. 109, 463–466 (1981)

    Article  Google Scholar 

  59. Williamson, D.: The evolution of dynamical cores for global atmospheric models. J. Meteorol. Soc. Jpn. 85B, 241–269 (2007)

    Article  Google Scholar 

  60. Zangl, G., Reinert, D., Ripodas, P., Baldauf, M.: The ICON (ICOsahedral Non-hydrostatic) modelling framework of DWD and MPI-M: description of the non-hydrostatic dynamical core. Q. J. R. Meteorol. Soc. 141, 563–579 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the anonymous reviewer for his/her comments and suggestions, which substantially improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven Caluwaerts .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Caluwaerts, S., Degrauwe, D., Voitus, F., Termonia, P. (2016). Discretization in Numerical Weather Prediction: A Modular Approach to Investigate Spectral and Local SISL Methods. In: Bátkai, A., Csomós, P., Faragó, I., Horányi, A., Szépszó, G. (eds) Mathematical Problems in Meteorological Modelling. Mathematics in Industry(), vol 24. Springer, Cham. https://doi.org/10.1007/978-3-319-40157-7_2

Download citation

Publish with us

Policies and ethics