Skip to main content

Quantifying Sources of Uncertainty in Temperature and Precipitation Projections over Different Parts of Europe

  • Conference paper
  • First Online:
Book cover Mathematical Problems in Meteorological Modelling

Part of the book series: Mathematics in Industry ((TECMI,volume 24))

Abstract

In this study, uncertainties emerging from natural climate variability, the description of physical processes in models and future anthropogenic activity are quantified for mean temperature and precipitation projections over various regions in Europe. Results of global climate models from CMIP3 dataset were used for 1951–2100 with SRES emission scenarios over the twenty-first century. We are concentrating on three main issues: (1) fractions of total uncertainty and its seasonal variation over the Carpathian Basin, Northern and Southern Europe; (2) limitations in theoretically reducible uncertainty through model development; (3) quantifying the ratio of projected change and total uncertainty (signal-to-noise ratio, when results are significant) and time horizons when changes exceed natural variability (time of emergence, when major impacts happen more likely). Internal variability is the dominant uncertainty factor for the Carpathian Basin, especially in winter due to the intensive circulation activity. Scenario uncertainty has lower impact for the Carpathian Basin than for Northern and Southern Europe, where it has importance for temperature results in the second half of the century. For precipitation, emission scenarios are less meaningful. Fraction of model uncertainty is continuously growing by 2100, especially for precipitation. The smaller the area, the later the mean temperature change surpasses total uncertainty. Signal-to-noise ratio is not significant for precipitation projections over Southern Europe and Carpathian Basin, and over Northern Europe it is only for winter and spring. Seasonal temperature changes exceed natural variability between 2020 and 2045 for the Carpathian Basin, and one-two decades earlier over Northern and Southern Europe. Precipitation projections do not emerge from natural variability over the Carpathian Basin; they do only in summer over Southern Europe, and all the other seasons over Northern Europe by the end of the century.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    World Climate Research Programme

  2. 2.

    Coupled Model Intercomparison Project

  3. 3.

    Special Report on Emissions Scenarios

References

  1. Boer, G.J.: Changes in interannual variability and decadal potential predictability under global warming. J. Clim. 22, 3098–3109 (2009). doi:10.1175/2008JCLI2835.1

    Article  Google Scholar 

  2. Déqué, M., Rowell, D.P., Luethi, D., Giorgi, F., Christensen, J.H., Rockel, B., Jacob, D., Kjellstrőm, E., de Castro, M., van den Hurk, B.J.J.M.: An intercomparison of regional climate simulations for Europe: assessing uncertainties in model projections. Clim. Chang. 81, 53–70 (2007).

    Article  Google Scholar 

  3. Deser, C., Phillips, A., Bourdette, V., Teng, H.: Uncertainty in climate change projections: the role of internal variability. Clim. Dyn. 38(3–4), 527–546 (2012). doi:10.1007/s00382-010-0977-x

    Article  Google Scholar 

  4. Deser, C., Knutti, R., Solomon, S., Phillips, A.S.: Communication of the role of natural variability in future North American climate. Nat. Clim. Chang. 2(11), 775–779 (2012). doi:10.1038/nclimate1562

    Article  Google Scholar 

  5. Deser, C., Phillips, A., Alexander, M.A., Smoliak, B.V.: Projecting North American climate over the next 50 years: uncertainty due to internal variability. J. Clim. 27, 2271–2296 (2014). doi:10.1175/JCLI-D-13-00451.1

    Article  Google Scholar 

  6. Dobler, C., Hagemann, S., Wilby, R.L., Stötter, J.: Quantifying different sources of uncertainty in hydrological projections in an Alpine watershed. Hydrol. Earth Syst. Sci. 16, 4343–4360 (2012). doi:10.5194/hess-16-4343-2012

    Article  Google Scholar 

  7. Hawkins, E., Sutton, R.: The potential to narrow uncertainty in regional climate predictions. Bull. Am. Meteorol. Soc. 90, 1095–1107 (2009). doi:10.1175/2009BAMS2607.1

    Article  Google Scholar 

  8. Hawkins, E., Sutton, R.: The potential to narrow uncertainty in projections of regional precipitation change. Clim. Dyn. 37, 407–418 (2011). doi:10.1007/s00382-010-0810-6

    Article  Google Scholar 

  9. Hawkins, E., Sutton, R.: Time of emergence of climate signals. Geophys. Res. Lett. 39, L01702, 6 (2012). doi:10.1029/2011GL050087

    Google Scholar 

  10. Haylock, M.R., Hofstra, N., Klein Tank, A.M.G., Klok, E.J., Jones, P.D., New, M.: A European daily high-resolution gridded dataset of surface temperature and precipitation. J. Geophys. Res. (Atmos.) 113, D20119 (2008). doi:10.1029/2008JD010201

    Article  Google Scholar 

  11. Jacob, D., Petersen, J., Eggert, B., Alias, A., Christensen, O. B., Bouwer, L. M., Braun, A., Colette, A., Déqué, M., Georgievski, G., Georgopoulou, E., Gobiet, A., Nikulin, G., Haensler, A., Hempelmann, N., Jones, C., Keuler, K., Kovats, S., Kröner, N., Kotlarski, S., Kriegsmann, A., Martin, E., van Meijgaard, E., Moseley, C., Pfeifer, S., Preuschmann, S., Radtke, K., Rechid, D., Rounsevell, M., Samuelsson, P., Somot, S., Soussana, J. F., Teichmann, C., Valentini, R., Vautard, R., Weber, B.: EURO-CORDEX: new high-resolution climate change projections for European impact research. Reg. Environ. Chang. 14, 563–578 (2014). doi: 10.1007/s10113-013-0499-2

    Google Scholar 

  12. Knutti, R., Furrer, R., Tebaldi, C., Cermak, J., Meehl, G.A.: Challenges in combining projections from multiple climate models. J. Clim. 23, 2739–2758 (2010). doi:10.1175/2009JCLI3361.1

    Article  Google Scholar 

  13. Krüzselyi, I., Bartholy, J., Horányi, A., Pieczka, I., Pongrácz, R., Szabó, P., Szépszó, G., Torma, C.S.: The future climate characteristics of the Carpathian Basin based on a regional climate model mini-ensemble. Adv. Sci. Res. 6, 69–73 (2011). doi:10.5194/asr-6-69-2011

    Article  Google Scholar 

  14. Mahlstein, I., Knutti, R., Solomon, S., Portmann, R.: Early onset of significant local warming in low latitude countries. Environ. Res. Lett. 6, 034009 (2011). doi:10.1088/1748-9326/6/3/034009

    Article  Google Scholar 

  15. Masson, D., Knutti, R.: Spatial scale dependence of climate model performance in the CMIP3 ensemble. J. Clim. 24, 2680–2692 (2011). doi:10.1175/2011JCLI3513.1

    Article  Google Scholar 

  16. Meehl, G.A., Covey, C., Delworth, T., Latif, M., McAvaney, B., Mitchell, J.F.B., Stouffer, R.J., Taylor, K.E.: The WCRP CMIP3 multi-model dataset: a new era in climate change research. Bull. Am. Meteorol. Soc. 88, 1383–1394 (2007). doi:10.1175/BAMS-88-9-1383

    Article  Google Scholar 

  17. Moss, R.H., Edmonds, J.A., Hibbard, K.A., Manning, M.R., Rose, S.K., van Vuuren, D.P., Carter, T.R., Emori, S., Kainuma, M., Kram, T.: The next generation of scenarios for climate change research and assessment. Nature 463, 747–756 (2010). doi:10.1038/nature08823

    Article  Google Scholar 

  18. Murphy, J.M., Sexton, D.M.H., Barnett, D.N., Jones, G.S., Webb, M.J., Collins, M., Stainforth, D.A.: Quantification of modelling uncertainties in a large ensemble of climate change simulations. Nature 429, 768–772 (2004). doi:10.1038/nature02771

    Article  Google Scholar 

  19. Nakicenovic, N., Alcamo, J., Davis, G., de Vries, B., Fenhann, J., Gaffin, S., Gregory, K., Grübler, A., Jung, T.Y., Kram, T., La Rovere, E.L., Michaelis, L., Mori, S., Morita, T., Pepper, W., Pitcher, H., Price, L., Raihi, K., Roehrl, A., Rogner, H.H., Sankovski, A., Schlesinger, M., Shukla, P., Smith, S., Swart, R., van Rooijen, S., Victor, N., Dadi, Z.: IPCC special report on emissions scenarios. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  20. Pennell, C., Reichler, T.: On the effective number of climate models. J. Clim. 24, 2358–2367 (2011). doi:10.1175/2010JCLI3814.1

    Article  Google Scholar 

  21. Sanderson, B.M., Knutti, R., Caldwell, P.: A representative democracy to reduce interdependency in a multimodel ensemble. J. Clim. 28, 5171–5194 (2015). doi:10.1175/JCLI-D-14-00362.1

    Google Scholar 

  22. Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M. (eds.): IPCC AR5 WGI: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp. (2013). doi:10.1017/CBO9781107415324

    Google Scholar 

  23. Taylor, K.E., Stouffer, R.J., Meehl, G.A.: An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012). doi:10.1175/BAMS-D-11-00094.1

    Article  Google Scholar 

  24. van der Linden, P., Mitchell, J. (eds.): ENSEMBLES: climate change and its impacts: summary of research and results from the ENSEMBLES Project. Met Office Hadley Centre, Exeter, p. 160 (2009)

    Google Scholar 

  25. Yip, S., Ferro, C., Stephenson, D., Hawkins, E.: A simple, coherent framework for partitioning uncertainty in climate predictions. J. Clim. 24, 4634–4643 (2011). doi:10.1175/2011JCLI4085.1

    Article  Google Scholar 

  26. Zubler, E.M., Fischer, A.M., Fröb, F., Liniger, M.A.: Climate change signals of CMIP5 general circulation models over the Alps—impact of model selection. Int. J. Climatol. (2015). doi:10.1002/joc.4538

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to the anonymous reviewer for thorough revision of the chapter. His or her detailed suggestions and good questions inspired us to think even more intensively on the interesting issues of the topic and helped us significantly improve the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Péter Szabó .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Szabó, P., Szépszó, G. (2016). Quantifying Sources of Uncertainty in Temperature and Precipitation Projections over Different Parts of Europe. In: Bátkai, A., Csomós, P., Faragó, I., Horányi, A., Szépszó, G. (eds) Mathematical Problems in Meteorological Modelling. Mathematics in Industry(), vol 24. Springer, Cham. https://doi.org/10.1007/978-3-319-40157-7_12

Download citation

Publish with us

Policies and ethics