Skip to main content

Heavy Metals Accumulation Ability of Wild Grass Species from Industrial Areas of Kazakhstan

  • Chapter
  • First Online:
Book cover Phytoremediation

Abstract

The classical and recent literature on phytoremediation of soils contaminated by heavy metals is analyzed; information about plants hyperaccumulators of heavy metals for phytoremediation, types of phytoremediation, mechanisms of hypertolerance and hyperaccumulation, the role of phytosiderophores in phytoremediation, opportunities of the use of “energy” plants, and transgenic plants for phytoremediation are discussed. Several ways to improve plants for phytoremediation as metal-helating agents, agronomic practices, conventional breeding, and gene-engineering methods are discussed. Experimental data on the test of wild grass species Agropyron repens, Agrostis alba, Bromus inermis, Dactylis glomerata, Phleum pratense, and Setaria viridis growing around metallurgic plants of East Kazakhstan on metal-accumulating ability are presented. All species have accumulated Zn and Pb mainly in the roots. These species were tested in artificial contaminated soils and hydroponic conditions on tolerance to heavy metal in field and hydroponic conditions. A. repens and S. viridis were more tolerant to Pb and Zn according to data from the hydroponic experiments treated with extremely high concentrations of Pb and Zn, P. pratense was more sensitive. The shoot/root Pb ratio was <1 for all species, but the shoot/root ratio for Zn was >1 for all species, except for A. repens and A. alba. In pot experiments, these grass species accumulated trace metals mainly in the roots. The possibilities of using these grass species for phytostabilization are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Panin MS, Melnik MS (2008) Tyazhelie metallic v ovoshnih kulturah v semipalatinskoi oblasti. In: Abstract of the international scientific-practical conference “Heavy metals and radionuclides in the environment”. The State Pegagogical University, Semey, 15–18 October 2008

    Google Scholar 

  2. Karpova EA (2012) Soderzhanie tyazhelih metallov v selskhozyaistvennih kulturah: vlianie airotechnogennoi nagruzki vblizi megapolisa. Paper presented at 6th international scientific conference “Heavy metals, radionuclides in the environment”, The State Pedagogic University, Semey, 4–7 February 2012

    Google Scholar 

  3. Kanibolotskaya UM (2013) Analyz soderzhania tyazhelih metallov v rasteniah (Artemisia austriaca Jacq, Agropyron pectinatum (Bieb.) Beauv., Potentilla bifurca L.) i pochve v Pavlodarskoi oblasti. HAA-n Shinzhleh yhaan satguul 10(1):113–118

    Google Scholar 

  4. Manara A (2012) Plant responses to heavy metal toxicity. In: Furini A (ed) Plants and heavy metals, Springer Briefs in Biometals. Springer, New York. doi:10.1007/978-94-007-4441-7_2

    Google Scholar 

  5. Morsy AA, Salama KH, Kamel HA, Mansour MMF (2012) Effect of heavy metals on plasma membrane lipids and antioxidant enzymes of Zygophyllum species. Eurasia J Biosci 6:1–10

    Article  CAS  Google Scholar 

  6. Le Gall H, Philippe F, Domon J-M, Gillet F et al (2015) Cell wall metabolism in response to abiotic stress. Plants 4(1):112–166. doi:10.3390/plants4010112

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Cheng S (2003) Effects of heavy metals on plants and resistance mechanisms. Environ Sci Pollut Res 10(4):256–264

    Article  CAS  Google Scholar 

  8. Haribabu TE, Sudha PN (2011) Effect of heavy metals copper and cadmium exposure on the antioxidant properties of the plant Cleome gynandra. IJPAES 1(2):80–87

    CAS  Google Scholar 

  9. Aldoobie NF, Beltagi MS (2013) Physiological, biochemical and molecular responses of common bean (Phaseolus vulgaris L.) plants to heavy metals stress. Afr J Biotechnol 12(29):4614–4622

    Article  CAS  Google Scholar 

  10. Sharma SS, Dietz K-J (2006) The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress. J Exp Bot 57(4):711–726

    Article  CAS  PubMed  Google Scholar 

  11. Hossain Z, Komatsu S (2013) Contribution of proteomic studies towards understanding plant heavy metal stress response. Front Plant Sci 3:12. doi:10.3389/fpls.2012.00310

    Article  Google Scholar 

  12. Prasad MNV, Stralka K (2002) Physiology and biochemistry of metal toxicity and tolerance in plants. Kluwer Academic, Dordrecht, 432p

    Book  Google Scholar 

  13. Emamverdian A, Ding Y, Mokhberdoran F et al (2015) Heavy metal stress and some mechanisms of plant defense. Scientific World J. Article ID 756120, pp 1–18. http://dx.doi.org/10.1155/2015/756120

  14. Shkolnik N, Alekseeva-Popova IV (1983) Rastenia v extremalnih usloviah mineralnogo pitania. Nauka, Leningrad, p 176

    Google Scholar 

  15. Chaney RL, Brown SL, Li Y-M et al (1995) Potential use of hyperaccumulator plant species to decontaminate metal polluted soils. Mining Environ Manage 3(3):9–11

    Google Scholar 

  16. Raskin I, Smith RD, Salt DE (1997) Phytoremediation of metals: using plants to remove pollutants from the environment. Curr Opin Biotech 8:221–226

    Article  CAS  PubMed  Google Scholar 

  17. Öztürk M, Ashraf M, Aksoy A, Ahmad MSA (eds) (2015) Phytoremediation for green energy. Springer (eBook). http://www.springer.com/us/book/9789400778863191

    Google Scholar 

  18. Chaney RL, Malik M, Li YM et al (1997) Phytoremediation of soil metals. Curr Opin Biotech 8:279–284

    Article  CAS  PubMed  Google Scholar 

  19. Prasad MN (2003) Prakticheskoe ispolzovanie rastenii dlya vosstanovlenia ecosistem, zagyaznennihtiazhelimi metallami. Fisiologia rastenii 50(5):764–780

    Google Scholar 

  20. Terry N, Zayed AM (1994) Selenium volatilization in plants. In: Frankenberger JW, Benson S (eds) Selenium in the environment. Marcel Dekker, New York, pp 343–369

    Google Scholar 

  21. Raskin I (1996) Plant genetic engineering way help with environmental cleanup. Proc Nat Acad Sci USA 93:3164–3166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Oruc HH (2010) Fungicides and their effects on animals. In: Carisse O (ed) Fungicides, http://www.intechopen.com/books/fungicides/fungicides-and-their-effects-on-animal

  23. Bull S (2011) HPA compendium of chemical hazards inorganic mercury/elemental mercury. Health Protection Agency. CRCE HQ, HPA 33p

    Google Scholar 

  24. Mendez MO, Maier RM (2008) Phytostabilization of mine tailings in arid and semiarid environments—an emerging remediation technology. Environ Health Perspect 116:278–283

    Article  CAS  PubMed  Google Scholar 

  25. Cotter-Howells JD, Champness PE, Charnock JM (1999) Mineralogy of Pb-P grains in the roots of Agrostis capillaris L. by ATEM and EXAFS. Min Mag 63(6):777–789

    Article  CAS  Google Scholar 

  26. Huang JW, Cunningham SD (1996) Lead phytoextraction: species variation in lead uptake and translocation. New Phytol 134:75–84

    Article  CAS  Google Scholar 

  27. Ensley BD (2000) Rationale for use of phytoremediation. Using plants to clean up the environment. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals. Wiley, New York, pp 3–11

    Google Scholar 

  28. Chaney RL, Ryan JA (1994) Risk based standards for arsenic, lead and cadmium in urban soils. New Phytol 103:1305–1309

    Google Scholar 

  29. Ernst W (1975) Physiology of metal resistance in plants. In: Proceedings of international conference on heavy metals in the environment. 27–31 October, Toronto, Canada. J Environ Qual 11:121–136. doi:10.2134/jeq1978.00472425000700040037x

    Google Scholar 

  30. Dhote S, Dixit S (2009) Water quality improvement through macrophytes. Environ Monit Assess 152:149–153

    Article  CAS  PubMed  Google Scholar 

  31. Favas PJC, Pratas J, Varun M et al (2014) Phytoremediation of soils contaminated with metals and metalloids at mining areas: potential of native flora. Environ Risk Assess Soil Contamin. pp 485–517. http://dx.doi.org/10.5772/5746913,27,28

  32. Li Y-M, Chaney RL, Brewer E et al (2003) Development of a technology for commercial phytoextraction of nicke: economic and technical considerations. Plant Soil 249:107–115

    Article  CAS  Google Scholar 

  33. Broadly MR, White PJ, Hammond JP et al (2007) Zinc in plants. New Phytol 173:677–702

    Article  CAS  Google Scholar 

  34. Palmergen MG, Clemens S, Williams LE (2008) Zinc biofortification of cereals: problems and solutions. Trends Plant Sci 13:464–473

    Article  CAS  Google Scholar 

  35. Vazquez MD, Poschenreider C, Barcelo J et al (1994) Compartmentation of zinc in roots and leaves of the zinc hyperaccumulator Thlaspi caerulescens. Bot Acta 107:243–250

    Article  CAS  Google Scholar 

  36. Chaney RL, Li Y-M, Scott JA (1999) Improving metal hyperaccumulator wild plants to develop commercial phytoextraction systems: approaches and progress. In: Terry N, Banuelos GS (eds) Phytoremediation of contaminated soil and water. CRC Press, Boca Raton, 97p

    Google Scholar 

  37. Lombi E, Zhao FJ, Dunham SJ (2000) Cadmium accumulation in populations of Thlaspi caerulescens and Thlaspi goesingense. New Phytol 145(1):11–20. doi:10.1046/j.1469-8137.2000.00560.x

    Article  CAS  Google Scholar 

  38. Kramer U, Cotter-Howels JD, Charnock JM et al (1996) Free histidine as a metal chelator in plants that accumulate nickel. Nature 379:635–638

    Article  CAS  Google Scholar 

  39. Chaney RL, Li YM, Scott JA (1998) Improving metal hyperaccumulator wild plants to develop commercial phytoextraction systems: approaches and Progress. Wiley, New York, 37p

    Google Scholar 

  40. Brooks RR (1998) Plants that hyper accumulate heavy metals. CAB International, Wallingford

    Google Scholar 

  41. Bert V, Bonnin I, Saumiyou-Laprade P (2002) Do Arabidopsis halleri from nonmetallicolous populations accumulate zinc and cadmium more effectively than those from metallicolous populations? New Phytol 155:47–57

    Article  CAS  Google Scholar 

  42. Hamon RE, Holm PE, Lorenz SE et al (1999) Metal uptake by plants from sludge-amended soils: caution is required in the plateu interpretation. Plant Soil 216:53–64

    Article  CAS  Google Scholar 

  43. McGrath SP (1998) Phytoextraction for soil remediation. In: Brooks RR (ed) Plants that hyperaccumulate heavy metals. CAB International, Wallingford, pp 261–287

    Google Scholar 

  44. Lasat MM, Fuhrman M, Ebbs SD (2003) Phytoextraction of radio cesium-contaminated soil: evaluation of cesium-137 bioaccumulation in the shoots of three plant species. J Environ Qual 27:165–169

    Article  Google Scholar 

  45. Baker AJ, McGrath SP, Reeves RD (2000) Metal hyperaccumulator plants: a review of the ecology and physiology of a biochemical resource for phytoremediation of metal polluted soils. In: Terry N (ed) Phytoremediation of contaminated soil and water. Lewis Publishers, Boca-Raton, pp 85–108

    Google Scholar 

  46. Takahashi M, Nakanishi H, Kawasaki N et al (2001) Enhanced tolerance of rice to low iron availability in alkaline soils using barley nicotianamine aminotransferase genes. Nat Biotechnol 19(5):417–418

    Article  CAS  Google Scholar 

  47. Inoue H, Higuchi K, Takanishi M et al (2003) Three rice nicotinamine synthase genes, OsNAS1, OsNAS2, OsNAS3 are expressed in cells involved in long distance transport of iron and differentially regulated by iron. Plant J 36:366–381

    Article  CAS  PubMed  Google Scholar 

  48. Negishi T, Nakanishi H, Yazaki J (2002) cDNA microarray analysis of gene expression during Fe-deficiency stress in barley suggests that polar transport of vesicles is implicated in phytosiderophore secretion in Fe-deficient barley roots. Plant J 30(1):83–94

    Article  CAS  PubMed  Google Scholar 

  49. Takagi S (1976) Naturally occurring iron-chelating compounds in oat- and rice-root washings. I. Activity measurement and preliminary characterization. Soil Sci Pl Nutr 22:423–433

    Article  CAS  Google Scholar 

  50. Marshner H, Romheld V, Kissel M (1986) Different strategies in higher plants in mobilization and uptake of iron. J Plant Nutr 9:695–713

    Article  Google Scholar 

  51. Takahashi M, Yamaguchi H, Nakanishi H et al (1999) Cloning two genes for nicotianamine aminotransferase, a critical enzyme in iron acquisition (Strategy II) in graminaceous plants. Plant Physiol 121:947–956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sugiura Y, Tanaka H, Mino Y et al (1981) Structure, properties, and transport mechanism of iron (III) complex of mugineic acid, a possible phytosiderophore. J Am Chem Soc 103:6979–6982

    Article  CAS  Google Scholar 

  53. Takagi S, Nomoto K, Takemoto S (1984) Physiological aspect of mugineic acid, a possible phytosiderophore of graminaceous plants. J Plant Nutr 7:469–477

    Article  CAS  Google Scholar 

  54. Nishiyama R, Kato M, Nagata S et al (2012) Identification of Zn–nicotianamine and Fe–20-deoxymugineic acid in the phloem sap from rice plants (Oryza sativa L.). Plant Cell Physiol 53(2):381–390

    Article  CAS  PubMed  Google Scholar 

  55. Klatte M, Schuler M, Wirtz M (2009) The analysis of Arabidopsis nicotianamine synthase mutants reveals functions for nicotianamine in seed iron loading and iron deficiency responses. Plant Physiol 150:257–271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Mari S, Gendre D, Pianelli K et al (2006) Root-to-shoot long-distance circulation of nicotianamine and nicotianamine–nickel chelates in the metal hyperaccumulator Thlaspi caerulescens. J Exp Bot 57(15):4111–4122

    Article  CAS  PubMed  Google Scholar 

  57. Nomoto K, Sigiura Y, Takagi S (1987) Mugineic acids, studies on phytosiderophores. In: Winkellmann G, Van der Helm D, Neilands JB (eds) Iron transport in microbes, plants and animals. VCH Publishers, New York, pp 401–425

    Google Scholar 

  58. Ma JF, Nomoto K (1996) Effective regulation of iron acquisition in graminaceous plant. The role of mugineic acids as phytosiderophores. Physiol Plan 97:609–617

    Article  CAS  Google Scholar 

  59. Treeby M, Marchner H, Romheld V (1989) Mobilization of iron and other micronutrient cations from a calcareous soil by plant-borne, microbial, and synthetic metal chelators. Plant Soil 114:217–226

    Article  CAS  Google Scholar 

  60. Neilands JB (1986) Siderophores in relation to plant growth and disease. Ann Rev Plant Physiol 37:187–208

    Article  CAS  Google Scholar 

  61. Suzuki M, Takahashi M, Tsukamoto T (2006) Biosynthesis and secretion of mugineic acid family phytosiderophores in zinc-deficient barley. Plant J 48:85–89

    Article  CAS  PubMed  Google Scholar 

  62. Tolay I, Erenoglu B, Romheld V et al (2001) Phytosiderophore release in Aegilops tauschii and Triticum species under zinc and iron deficiencies. J Exp Bot 52(358):1093–1099

    Article  CAS  PubMed  Google Scholar 

  63. Shenker M, Fan TW, Crowley DE (2001) Phytosiderophores influence on cadmium mobilization and uptake by wheat and barley plants. J Environ Qual 30(6):2091–2098

    Article  CAS  PubMed  Google Scholar 

  64. Demidchik VV, Sokolik AI, Urin VM (2001) Postuplenie medi v rastenia i raspredelenie v kletkah, tkaniah i organah. Uspehi Sovr Biol 121(2):190–197

    CAS  Google Scholar 

  65. Toshihiro Y, Hirotaka H, Yoshiyuki M et al (2006) Cadmium inducible fe deficiency responses observed from macro and molecular views in tobacco plants. Plant Cell 25(4):365–373

    Article  CAS  Google Scholar 

  66. Alekseeva UE, Lepkovich IP (2003) Kadmii I zink v rasteniah lugovih fitocenosov. Agrohimia 9:66–69

    Google Scholar 

  67. Hill KA, Lion LW, Ahner BA (2002) Reduced Cd accumulation in Zea mays: a protective role for phytosiderophores? Environ Sci Technol 36(24):5363–5368

    Article  CAS  PubMed  Google Scholar 

  68. Gries D, Brunn S, Crowley DE (1995) Phytosiderophore release in relation to micronutrient metal deficiencies in barley. Plant Soil 172:299–308

    Article  CAS  Google Scholar 

  69. Chlegel R, Kynast R, Schwarzzacher T et al (1993) Mapping of genes for copper efficiency in rye and the relationship between copper and iron efficiency. Plant Soil 154(1):61–65

    Article  Google Scholar 

  70. Yehuda Z, Shenker M, Romheld V (1996) The role of ligand exchange in the uptake of iron from microbial siderophores by gramineous plants. Plant Physiol 112:1273–1280

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Weber M, Harada E, Vess C et al (2004) Comparative microarray analysis of Arabidopsis thaliana and Arabidopsis halleri roots identifies nicotianamine synthase, a ZIP transporter and other genes as potential metal hyperaccumulation factors. Plant J 37:269–281

    Article  CAS  PubMed  Google Scholar 

  72. Pianelli K, Mari S, Marque SL et al (2005) Nicotianamine over-accumulation confers resistance to nickel in Arabidopsis thaliana. Transgen Res 14:739–748

    Article  CAS  Google Scholar 

  73. Salt DE, Rauser WE (1995) Mg-ATPase dependent transport of phytochelatins across the tonoplast of oat roots. Plant Physiol 107:1293–1301

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Ahner BA, Morel FMM (1995) Phytochelatin production in marine algae. Limnol Oceanograph 40(4):649–665

    Article  CAS  Google Scholar 

  75. Cobbett CS (2000) Phytochelatins and their roles in heavy metal detoxification. Plant Physiol 123:825–832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Oven M, Raith K, Neubert HH (2001) Homo-phytochelatins are synthesized in response to cadmium in Azuki beans. Plant Physiol 126:1275–1280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Rauser WE (1995) Phytochelatins and related peptides. Plant Physiol 109:1141–1149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ruttkay-Nedecky B, Nejd L, Gumulec J et al (2013) The role of metallothionein in oxidative stress. Int J Mol Sci 14:6044–6066. doi:10.3390/ijms14036044, www.mdpi.com/journal/ijms

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Breen JG, Nelson E, Miller RK (1995) Cellular adaptation to chronic cadmium exposure: intracellular localization of metallothionein protein in human trophoblast cells. Teratology 51(4):266–272

    Article  CAS  PubMed  Google Scholar 

  80. Van Hoof NA, Hassinen VH, Hakvoork HWJ (2001) Enhanced copper tolerance in Silene vulgaris (Moench) Gracke populations from copper mines is associated with increased transcript levels of 2b-type metallothioneine gene. Plant Physiol 126:1519–1526

    Article  PubMed  PubMed Central  Google Scholar 

  81. Grennan AK (2011) Metallothioneins, a diverse protein family. Plant Physiol 155:1750–1761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Dahmani-Muller H, Van-Oort F, Gelie B et al (2000) Strategies of heavy metal uptake by three plant species growing near a metal smelter. Environ Pollut 109:231–238

    Article  CAS  PubMed  Google Scholar 

  83. Neumann D, Zur Nieden U (1995) How does Armeria maritima tolerate high heavy metal concentrations? Plant Physiol 146(5–6):704–717

    Article  CAS  Google Scholar 

  84. Schat H, Llugany M, Vooijs R et al (2002) The role of phytochelatins in constitutive and adaptive heavy metal tolerances in hyperaccumulator and non-hyperaccumulator metallophytes. J Exp Bot 53:1–12

    Article  CAS  Google Scholar 

  85. Okuyama M, Kobayashi Y, Inouhe M (1999) Effect of some heavy metal ions on copper-induced metallothionein synthesis in yeast Saccharomyces cerevisiae. Biometals 12(4):307–314

    Article  CAS  PubMed  Google Scholar 

  86. Garsia-Hernandes M, Murphy A, Taiz L (1998) Metallothioneins 1 and 2 have distinct, but overlapping expression patterns in Arabidopsis. Plant Physiol 118:387–389

    Article  Google Scholar 

  87. Jack E, Hakvoort HVJ, Reumer A et al (2007) Real time PCR-analysis of metallothioneine-2B expression in metallicolous and non metallicolous populations in Silene vulgaris (Moench) Garcke. Environ Exp Bot 59:84–91

    Article  CAS  Google Scholar 

  88. Schmager MEV, Oven M, Grill E (2000) Detoxification of arsenic by phytochelatins in plants. Plant Physiol 122:739–802

    Google Scholar 

  89. Grill E, Luffler S, Winnacker E-L (1989) Phytochelatins, the heavy-metal-binding peptides of plants, are synthesized from glutathione by a specific g-glutamylcysteine dipeptidyl transpeptidase (phytochelatin synthetase). Proc Nat Acad Sci USA 86:6838–6842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Clemens S, Palmgren MG, Kramer U (2002) A long way ahead: understanding and engineering plant metal accumulation. Trends Plant Sci 7:309–315

    Article  CAS  PubMed  Google Scholar 

  91. Batista BL, Nigar M, Mestro A et al (2014) Identification and quantification of phytochelatins in roots of rice to long-term exposure: evidence of individual role on arsenic accumulation and translocation. J Exp Bot 65(6):1467–1479. doi:10.1093/jxb/eru018 First published online: 5 March 2014 http://jxb.oxfordjournals.org/open

  92. Wu Z, Zhang C, Yan J et al (2013) Separation and quantification of cysteine, glutathione and phytochelatins in rice (Oryza sativa L.) upon cadmium exposure using reverse phase ultra performance liquid chromatography (RP-UPLC) with fluorescence detection. Anal Methods 5:6147–6152

    Article  CAS  Google Scholar 

  93. Tsuji N, Hirayanagi N, Iwabe O et al (2003) Regulation of phytochelatin synthesis by zinc and cadmium in marine green alga, Dunaliella tertiolecta. Phytochemistry 62(3):453–459

    Article  CAS  PubMed  Google Scholar 

  94. Kvesitadze GI, Hatisashvili GA, Sadunishvili TA et al (2002) Meatbolism antropogennih toksikantov v visshih rasteniah. Nauka, Moskva, 197p

    Google Scholar 

  95. Xiang C, Oliver DJ (1998) Glutathione metabolic genes coordinately respond to heavy metals and jasmonic acid in Arabidopsis. Plant Cell 10:1539–1550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Lee J, Reeves RD, Brooks RR et al (1977) Isolation and identification of citrato-complex of nickel from nickel-accumulating plants. Biochemistry 16:1503–1505

    CAS  Google Scholar 

  97. Lebedeva AF, Savanina IV, Barskyi EL (1998) Ustoichivost cyanobakterii I microvodoroslei k deistviu tiazhelih metallov. Rol metallosvyasivaushih belkov. Vest. MGU 2:42–49

    Google Scholar 

  98. Inouhe M, Ito R, Ito S (2000) Azuki bean cells are hypersensitive to cadmium and do not synthesize phytochelatins. Plant Physiol 123:1029–1036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Gupta SC, Goldsborough PB (1991) Phytochelatin accumulation and cadmium tolerance in selected tomato cell lines. Plant Physiol 97:306–312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Burdin KS, Polyakova UE (1987) Metallothioneini, ih strjenie I funkcii. Usp Sovr Biol 103(3):390–400

    Google Scholar 

  101. Dominguez JR, Guttierez-Alcala G, Romero LC (2001) The cytosole O-acetylserine (thiol) lyase gene is regulated by heavy metals and can function in cadmium tolerance. J Biol Chem 276:9297–9302

    Article  Google Scholar 

  102. Delhaize E, Jackson PJ, Lujan LD (1989) Poly (g-glutamylcysteinyl) glycine synthesis in Datura innoxia and binding with cadmium. Plant Physiol 89(2):700–706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Gachot B, Tauc M, Wanstoc F (1994) Zinc transport and metallothionein induction in primary cultures of rabbit kidney proximal cells. Biochim Biophys Acta 191(2):291–298

    Article  Google Scholar 

  104. Harmens H, Den Hartog PR, Verkleij JA (1993) Increased zinc tolerance in Silene vulgaris (Moench) Garcke is not due to increased production of phytochelatins. New Phytol 103:1305–1309

    CAS  Google Scholar 

  105. Howden R, Andersen CR, Gobbett CS (1995) A cadmium-sensitive, glutathione-deficient mutant of Arabidopsis thaliana. Plant Phys 107:1067–1073

    Article  CAS  Google Scholar 

  106. Lombi E, Zhao FJ, McGrath SP et al (2001) Physiological evidence foe high-affinity transporter highly expressed in Thlaspi caerulescens ecotype. New Phytol 149:53–60

    Article  CAS  Google Scholar 

  107. Zhu YL, Pilon-Smits EAH, Jouanin L et al (1999) Overexpression of glutathione synthetase in Indian mustard enhances cadmium accumulation and tolerance. Plant Physiol 119:73–80

    Article  CAS  Google Scholar 

  108. Foyer CH, Haliwell B (1976) The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism. Planta 133:21–25

    Article  CAS  PubMed  Google Scholar 

  109. Marrs K (1996) The functions and regulation of glutathione S-transferases in plants. Ann Rev Plant Physiol Plant Mol Biol 47:127–158

    Article  CAS  Google Scholar 

  110. Zenk MH (1996) Heavy metal detoxification in higher plants: a review. Gene 179:21–30

    Article  CAS  PubMed  Google Scholar 

  111. Chen J, Zhou J, Goldsbrough PB (1997) Characterization of phytochelatin synthase from tomato. Physiol Plant 101:165–172

    Article  CAS  Google Scholar 

  112. Steffens JC (1990) The heavy metal-binding peptides of plants. Ann Rev Plant Physiol Plant Mol Biol 41:553–575

    Article  CAS  Google Scholar 

  113. Foyer CH, Souriau N, Perret S et al (1995) Over-expression of glutathione reductase but not glutathione synthetase leads to increases in antioxidant capacity and resistance to photoinhibition in poplar trees. Plant Physiol 109:1047–1057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Schneider S, Bergmann L (1995) Regulation of glutathione synthesis in suspension cultures of parsley and tobacco. Bot Acta 108:34–40

    Article  CAS  Google Scholar 

  115. Rauser WE, Schupp R, Rennenberg H (1991) Cysteine, γ-glutamylcysteine and glutathione levels in maize seedlings. Distribution and translocation in normal and cadmium-exposed plants. Plant Physiol 97:128–138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Goldbrough PB (1998) Metal tolerance in plants: the role of phytochelatins and metallothioneins. In: Terry N, Banuelos GS (eds) Phytoremediation of trace elements. CRC Press, Boca Raton, pp 221–233

    Google Scholar 

  117. Cheung WY (1984) Calmodulin: its potential role in cell proliferation and heavy metal toxicity. Fed Proc 43:2995–2999

    CAS  PubMed  Google Scholar 

  118. Marchiol L, Leita L, Martin M et al (1996) Physiological responses of two soybean cultivars to cadmium. J Environ Qual 25:562–566

    Article  CAS  Google Scholar 

  119. Petit CM, van de Geijn SC (1978) In vivo measurements of cadmium (115 mM Cd) transport and accumulation in steams of intact tomato plants (Lycopersicon esculentum Mill). I. Long distance transport and local. Planta 138:137–143

    Article  CAS  PubMed  Google Scholar 

  120. Kos B, Grčman H, Leštan D (2003) Phytoextraction of lead, zinc and cadmium from soil by selected plants. Plant Soil Environ 49:548–553

    CAS  Google Scholar 

  121. Dede G, Ozdemir S, Dede HO (2012) Effect of soil amendments on phytoextraction potential of Brassica juncea growing on sewage sludge. Int J Environ Sci Technol 9:559–564

    Article  CAS  Google Scholar 

  122. Hong PKA, Li C, Banerji SK, Regmi T (1999) Extraction, recovery and biostability of EDTA for remediation of heavy metal-contaminated soil. J Soil Contam 8:81–103

    Article  CAS  Google Scholar 

  123. Sun B, Zhao FJ, Lombi E et al (2001) Leaching of heavy metals from contaminated soils using EDTA. Environ Pollut 113:111–120

    Article  CAS  PubMed  Google Scholar 

  124. Jiang XJ, Luo YM, Zhao QG (2003) Soil Cd availability to Indian mustard and environmental risk following EDTA addition to Cd-contaminated soil. Chemosphere 50:813–818

    Article  CAS  PubMed  Google Scholar 

  125. Farid M, Ali S, Shakoor MB, Bharwana SA et al (2013) EDTA assisted phytoremediation of cadmium, lead and zinc. Int J Agron Plant Prod 4(11):2833–2846

    Google Scholar 

  126. Barona A, Aranguiz I, Elias A (2001) Metal associations in soils before and after EDTA extractive decontamination: implications for the effectiveness of further clean-up procedures. Environ Pol 113:79–85

    Article  CAS  Google Scholar 

  127. McGrath SP, Zhao FJ, Lombi E (2002) Phytoremediation of metals, metalloids and radionuclides. Adv Agron 75:1–56

    Article  CAS  Google Scholar 

  128. Vassil A, Kapulnik Y, Raskin I, Salt DE (1998) The role of EDTA in lead transport and accumulation by Indian mustard. Plant Physiol 117:447–453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Blaylock MJ, Salt DE, Dushenkov S et al (1997) Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents. Environ Sci Technol 31:860–865

    Article  Google Scholar 

  130. Kayser AK, Wenger A, Keller W (2000) Enhancement of phytoextraction of Zn, Cd and Cu from calcareous soil: the use of NTA and sulfur amendments. Environ Sci Technol 34:1178–1183

    Article  CAS  Google Scholar 

  131. Robinson BH, Mills TV, Petit D et al (2000) Natural and induced cadmium accumulation in poplar and willow: implications for phytoremediation. Plant Soil 227:301–306

    Article  CAS  Google Scholar 

  132. Platonov VV, Lebedeva GF, Proskuryakova VA et al (2005) Himicheskaya modifikasia guminovih preparatov s celiu povishenia ich biologicheskoi aktivnosti. ZHPH 78(8):1384

    Google Scholar 

  133. Grzybowsky W (2000) Comparison between stability constants of cadmium and lead complexes with humic substances of different molecular weight isolated from Baltic Sea water. Oceanologia 42(4):473–482

    Google Scholar 

  134. Evangelouye MWH, Daghan H, Schaeffer A (2004) The influence of humic acids on the phytoextraction of cadmium from soil. Chemosphere 57:207–213

    Article  CAS  Google Scholar 

  135. Topcuoğlu B (2013) Effects of humic acids on the phytoextraction efficiency of sludge applied soil. IJCEBS 1(1) http://www.isaet.org/images/extraimages/IJCEBS%200101106.pdf

  136. Seyyedi M, Moghaddam PR, Shahriari R et al (2013) Allelopathic potential of sunflower and caster bean on germination properties of dodder (Cuscuta compestris). Afr J Agric Res 8(7):601–607

    Google Scholar 

  137. Kupidłowska E, Gniazdowska A, Stpien J et al (2006) Impact of sunflower (Helianthus annuus L.) extracts upon reserve mobilization and energy metabolism in germinating mustard (Sinapis alba L.) seeds. J Chem Ecol 32:2569–2583

    Article  PubMed  CAS  Google Scholar 

  138. Lesage E, Meers E, Vervaeke P et al (2005) Enhanced phytoextraction: II. Effect of EDTA and citric acid on heavy metal uptake by Helianthus annuus from a calcareous soil. Int J Phytoremediation 7(2):143–152

    Article  CAS  PubMed  Google Scholar 

  139. Gulz PA, Gupta SK, Schulin R P (2003) Enhanced phytoextraction of arsenic from contaminated soil using sunflower. In: Abstracts of the 7th international conference on the biogeochemistry of trace elements (7th ICOBTE), Vol I–II, pp 148–149. Uppsala, Sweden, 15–19 June 2003

    Google Scholar 

  140. Boonyapookana B, Parkpian P, Techapinyawat S et al (2005) Phytoaccumulation of lead by sunflower (Helianthus annuus), tobacco (Nicotiana tabacum), and vetiver (Vetiveria zizanioides). J Environ Sci Health, Part A, Tox Hazard Subst Environ Eng 40(1):117–137

    Article  CAS  Google Scholar 

  141. Begonia GB (1997) Comparative lead uptake and responses of some plants grown on lead contaminated soils. J Mississippi Acad Sci 42:101–106

    Google Scholar 

  142. Lee I, Baek K, Kim H et al (2007) Phytoremediation of soil co-contaminated with heavy metals and TNT using four plant species. J Environ Sci Health A Tox Hazard Subst Environ Eng 42(13):2039–2045

    Article  CAS  PubMed  Google Scholar 

  143. Solhi M, Hajabbasi MA, Shareatmadari H (2005) Heavy metals extraction potential of sunflower (Helianthus annuus) and canola (Brassica napus). Caspian J Env Sci 3(1):35–42

    Google Scholar 

  144. Raskin I, Nanda Kumar PBA, Dushenkov V, Salt DE (1994) Bioconcentration of heavy metals by plants. Curr Op Biol 5:285–290

    CAS  Google Scholar 

  145. Romeiro S, Lagôa AMM, Furlani PR (2006) Lead uptake and tolerance of Ricinus communis L. Braz. J Plant Physiol 18(4):18–25

    Google Scholar 

  146. Zhi-xin N, Sun LN, Sun TH et al (2007) Evaluation of phytoextracting cadmium and lead by sunflower, ricinus, alfalfa and mustard in hydroponic culture. J Environ Sci (China) 19(8):961–975

    Article  Google Scholar 

  147. Vwioko DE, Anoliefo G, Fashemi SD (2006) Castor oil grown in soil contaminated with spent lubricating oil. J App Sci Environ Manag 10(3):127–134

    Google Scholar 

  148. Marchiol L, Assoaris S, Sacco P et al (2004) Phytoextraction of heavy metals by canola (Brassica napus) and radish (Raphanus sativus) grown on multicontaminated soil. Environ Pollut 132(1):21–27

    Article  CAS  PubMed  Google Scholar 

  149. Kvesitadze GI, Hatisashvili GA, Sadunishvili TA et al (2005) Meatbolism antropogennih toksikantov v visshih rasteniah. Nauka, Moskva, 197p

    Google Scholar 

  150. Pilon-Smits E, Pilon M (2002) Phytoremediation of metals using transgenic plants. Crit Rev Plant Sci 21(5):439–456

    Article  CAS  Google Scholar 

  151. Krystofova O, Zitka O, Krizkova S et al (2012) Accumulation of cadmium by transgenic tobacco plants (Nicotiana tabacum L.) carrying yeast metallothionein gene revealed by electrochemistry. Int J Electrochem Sci 7:886–907

    CAS  Google Scholar 

  152. Bizily SP, Rugh CL, Meagher RB (2000) Phytodetoxification of hazardous organomercurials by genetically engineered plants. Nat Biotechnol 18:213–217

    Article  CAS  PubMed  Google Scholar 

  153. Rugh CL, Bizily SP, Meagher RB (2000) Phytoreduction of environmental mercury pollution. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals—using plants to clean up the environment. Wiley, New York, pp 151–171

    Google Scholar 

  154. Raskin I, Ensley BD (2000) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New York, p 303

    Google Scholar 

  155. Bizily SP, Kim T, Kandasamy MK (2003) Subcellular targeting of methylmercury lyase enhances. Its specific activity for organic mercury detoxification in plants. Plant Physiol 131:463–467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Brewer EP, Saunders JA, Angle JS et al (1999) Somatic hybridization between the zinc accumulator Thlaspi caerulescens and Brassica napus. Theor Appl Genet 99:761–771

    Article  CAS  Google Scholar 

  157. Koprivova A, Kopriva S, Jager D et al (2002) Evaluation of transgenic poplars over expressing enzymes of glutathione synthesis for phytoremediation of cadmium. Plant Biol 4:664–670

    Article  CAS  Google Scholar 

  158. Ow DW (1996) Heavy metal tolerance genes-prospective tools for bioremediation. Res Conserv Recycling 18:135–149

    Article  Google Scholar 

  159. Blaylock MJ, Huang JW (2000) Phytoextraction of metals. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New York, pp 53–70

    Google Scholar 

  160. Hetland MD, Gallagher JR, Daly DJ et al (2001) Processing of plants used to phytoremediate lead-contaminated sites. In: Leeson A, Foote EA, Banks MK, Magar VS (eds) Proceedings of the 6th international in situ and on-site bioremediation symposium. Phytoremediation, wetlands, and sediments, San Diego, Battelle Press, Columbus, Richland, 4–7 June 2001, pp 129–136

    Google Scholar 

  161. Kumar PB, Dushenkov AN, Motto VH et al (1995) Phytoextraction: the use of plants to remove heavy metals from soils. Environ Sci Technol 29:1232–1238

    Article  CAS  PubMed  Google Scholar 

  162. Nicks L, Chambers MF (1994) Nickel farm. Discover, p 19

    Google Scholar 

  163. Iyer PVR, Rao TR, Grover PD (2002) Biomass thermochemical characterization, 3rd edn. Indian Institute of Technology, Delhi, India, p 38

    Google Scholar 

  164. Bridgwater AV, Meier D, Radlein D (1999) An overview of fast pyrolysis of biomass. Org Geochem 30:1479–1493

    Article  CAS  Google Scholar 

  165. Lasat MM (2001) American association for the advancement of science environmentals science and engineering fellow. The use of plants for the removal of toxic metals from contaminated soils. Environmental Protection Agency, New York, 2001, 33p

    Google Scholar 

  166. Shariphanova AS, Belgubayeva AE (2009) Soderzhanie tiazhelih metallov v hvoe b steble eli sibirskoi (Picea obovata Ledeb) v usloviah markakolskogo gosudarstvennogo prirodnogo zapovednika. Kazakhstannin industrialik-innovacialik damuindagi gilimnig roli, Ust-Kamenogorsk: VKGU, pp 163–166

    Google Scholar 

  167. Tasekeev M (2004) Bioremediacia txichnih promyshlennih othodov. Promyshlennost Kazakhstana 5(26):59–63

    Google Scholar 

  168. Panin MS (1998) Influence of anthropogenic activity and human agrochemical activity on migration of heavy metals in system “soil-plant”. In: International conference on the state and rational use of soils in Kazakhstan, 12–15 September 1998, Almaty, Kazakhstan, pp 76–79 (Abstract)

    Google Scholar 

  169. Prasad MNV (2006) Stabilization, remediation and integrated management of metal-contaminated ecosystems by grasses (Poaceae). In: Prasad MNV, Sajwan KS, Ravi Naidu (eds) Trace elements in the environment: biogeochemistry, biotechnology and bioremediation. CRC Press, Boca Raton, pp 405–424

    Google Scholar 

  170. Vernay P, Gauthier-Moussard C, Hitmi A (2007) Interaction of bioaccumulation of trace metal chromium with water relation, mineral nutrition and photosynthesis in developed leaves of Lolium perenne L. Chemosphere 68:1563–1575

    Article  CAS  PubMed  Google Scholar 

  171. Li T, Yang X, Lu L et al (2009) Effects of zinc and cadmium interactions on root morphology and metal translocation in a hyperaccumulating species under hydroponic conditions. J Hazard Mater 169:734–741

    Article  CAS  PubMed  Google Scholar 

  172. Zhang X, Xia H, Li Z et al (2010) Potential of four for age grasses in remediation of Cd and Zn contaminated soils. Biores Technol 101(6):2063–2066

    Article  CAS  Google Scholar 

  173. Boisson S, Le Stradic S, Collignon J (2015) Potential of copper-tolerant grasses to implement phytostabilisation strategies on polluted soils in South D.R. Congo. Environ Sci Poll Res. First online: 8 October 2015, pp 1–13. http://www.link.springer.com/article/10.1007%2Fs11356-015-5442-2

  174. Comino E, Fiorucci A, Menegatti S, Marocco C (2009) Preliminary test of arsenic and mercury uptake by Poa annua. Ecol Eng 35:343–350

    Article  Google Scholar 

  175. Mateos-Naranjo E, Redondo-Gómez S et al (2008) Growth and photosynthetic responses to copper stress of an invasive cord grass, Spartina densiflora. Marine Environ Res 66:459–465

    Article  CAS  Google Scholar 

  176. Deram A, Languereau-Leman F, Howsam M et al (2008) Seasonal patterns of cadmium accumulation in Arrhenatherum elatius (Poaceae): influence of mycorrhizal and endophytic fungal colonization. Soil Biol Biochem 40:845–848

    Article  CAS  Google Scholar 

  177. Abhilash PC, Powell JR, Singh HB et al (2012) Plant-microbe interactions: novel applications for exploitation in multipurpose remediation technologies. Trends Biotechnol 30(8):416–420. doi:10.1016/j.tibtech.2012.04.004

    Article  CAS  PubMed  Google Scholar 

  178. Frérot H, Lefèbvre C, Gruber W et al (2006) Specific interactions between local metallicolous plants improve the phytostabilization of mine soils. Plant Soil 282(1):53–65

    Article  CAS  Google Scholar 

  179. Hartley W, Dickinson NM, Riby P et al (2009) Arsenic mobility in brownfield soils amended with greenwaste compost or biochar and planted with Miscanthus. Environ Pollut 157:2654–2662

    Article  CAS  PubMed  Google Scholar 

  180. Dunn CE (1992) Bigeochemical exploration for deposits of the noble metals. In: Brooks RR (ed) Noble metals and biological systems: their role in medicine, mineral exploration and the environment. CRS Press, Boca Raton, pp 47–89

    Google Scholar 

  181. LMN/SOP-06 (2006). Digestion of hard samples for heavy metal determination in the flame, 10p

    Google Scholar 

  182. Ovcharov KE (1979) Physiologicheskie osnovi vshozhesti semian. Nauka, Moskva, 278p

    Google Scholar 

  183. Hoagland DR, Broyer TC (1940) General nature of process of salt accumulation by roots with description of experimental methods. Am J Bot 3:431–444

    Google Scholar 

  184. LMN/SOP-08 (FLAA) (2001) Work process of Analyst 300 Perkin Elmer (in the flame), 14p

    Google Scholar 

  185. Atabayeva S, Sarsenbayev B, Prasad MNV et al (2010) Accumulation of trace metals in grasses of Kazakhstan: relevance to phytostabilization of mine waste and metal-smelting areas. AAJPSB Special issue: Kazakhstan Plant Science and Biotechnology, pp 91–97

    Google Scholar 

  186. Wenzel W, Adriano D, Salt D et al (2000) Phytoremediation: a plant-microbe-based remediation system. In: Bioremediationof contaminated soils. Agronomy Monograph no 37, 508p

    Google Scholar 

  187. Ghosh M, Singh SP (2005) A review on phytoremediation of heavy metals and utilization of its byproducts. App Ecol Environ Res 3(1):1–18

    Article  Google Scholar 

  188. Wang Y, Shi J, Lin Q et al (2007) Trace metal availability and impact on activity of soil microorganisms along a Cu/Zn contamination gradient. J Environ Sci 19:848–853

    Article  CAS  Google Scholar 

  189. Glass DI (1999) US International markets for phytoremediation 1999–2000. D.J. Glass Associates, Needham, 266p

    Google Scholar 

  190. Hofrichter M, Steinbuchel A (2001) Biopolymers, vol. 1, Lignin, humic substances and coal. Wiley Europe-VCH, Weinheim

    Google Scholar 

  191. Stadnikov GL (1973) Proishozhdenie uglei i nefti, 3rd edn. Nauka, Leningrad

    Google Scholar 

  192. Lagier T, Feuillade G, Matejka G (2000) Interactions between copper and organic macromolecules: determination of conditional complexation constants. Agronomie 20:537–546

    Article  Google Scholar 

  193. Li Z, Shuman LM (1996) Heavy metal movement in metal-contaminated soil profiles. Soil Sci 161:656–666

    Article  CAS  Google Scholar 

  194. Koopmans GF, Römkens PFA, Fokkema MJ et al (2008) Feasibility of phytoremediation to remediate cadmium and zinc contaminated soils. Environ Pollut 156:905–914

    Article  CAS  PubMed  Google Scholar 

  195. Saifullah E, Meers M, Qadir P et al (2009) EDTA assisted Pb-phytoextraction. Chem 10:1279–1291

    Google Scholar 

  196. Vamerali T, Bandiera M, Mosca G (2010) Field crops for phytoremediation of metal-contaminated land. Environ Chem Lett 8:1–17

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saule Atabayeva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Atabayeva, S. (2016). Heavy Metals Accumulation Ability of Wild Grass Species from Industrial Areas of Kazakhstan. In: Ansari, A., Gill, S., Gill, R., Lanza, G., Newman, L. (eds) Phytoremediation. Springer, Cham. https://doi.org/10.1007/978-3-319-40148-5_6

Download citation

Publish with us

Policies and ethics