Skip to main content

Aquatic Macrophytes for the Removal of Heavy Metals from Coal Mining Effluent

  • Chapter
  • First Online:

Abstract

Pollution of aquatic environment by heavy metals is currently of great concern. In the process of coal mining, huge amount of waste water is discharged on surface to facilitate mining operation. The discharged water often contains high load of TSS, TDS, hardness and heavy metals which contaminates surface and ground water. Present study gives a brief account of water pollution resulted due to coal mining effluent and removal of heavy metals from coal mining effluent. Among the different technologies used for the treatment of heavy metals, phytoremediation is one of the most important one which treats the metals with help of green plants. Several aquatic macrophytes have been used for heavy metal removal from various sources. Macrophytes Eichhornia crassipes, Spirodela polyrrhiza, Lemna minor, water lettuce (Pistia stratiotes) and small water fern (Azolla pinnata) have been proven very effective and safe in removing different heavy metals from coal mining effluent. Some of the studies have been reviewed here. Among different studies Eichhornia crassipes has been proved most efficient accumulator of heavy metals from coal mining effluent.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Mishra VK, Upadhyayay AR, Pandey SK, Tripathi BD (2008) Heavy metal pollution induced due to coal mining effluent on surrounding aquatic ecosystem and its management through naturally occurring aquatic macrophytes. Bioresour Technol 99:930–936

    Article  CAS  PubMed  Google Scholar 

  2. Dhar BB, Ratan S, Jamal A (1986) Impact of Opencast coal mining on water environment—a case study. J Mines Metals Fuels 34(12):596–601

    CAS  Google Scholar 

  3. Jamal A, Dhar BB, Ratan S (1991) Acid mine drainage control in an opencast coal mine. Int J Mine Water Environ 10:1–16

    CAS  Google Scholar 

  4. Chakraborty MK, Chaulya SK, Ahmad M, Singh KK, Singh RS, Tiwari BK, Gupta PK (2000) Hydro-geological conditions around an opencast mine. Minetech 22(1):41–53

    Google Scholar 

  5. Younger PL (1994) Minewater pollution: the revenge of old king coal. Geoscientist 4(5):6–8

    Google Scholar 

  6. Younger PL (1995) Hydrogeochemistry of mine waters flowing from abandoned coal workings in the Durham coal fields. Quart J Eng Geol 28(4):101–113

    Article  Google Scholar 

  7. Younger PL (1995) Mine water pollution in Britain: past, present and future. Mineral Plann 65:38–41

    Google Scholar 

  8. Younger PL (1997) Mine water treatment using wetlands. In: Young PL (ed) Proceedings of national conference, University of Newcastle, London: Chartered Institution of Water and Environmental Management, 5 Sept 1997, 189p

    Google Scholar 

  9. Younger PL (1997) The longevity of mine water pollution: a basis for decision making. Sci Total Environ 1(94/195):457–466

    Article  Google Scholar 

  10. Banks D, Younger PL, Arnesen RT, Iversen ER, Banks SD (1997) Mine water chemistry: the good, the bad and the ugly. Environ Geol 32:157–174

    Article  Google Scholar 

  11. Cardwell A, Hawker D, Greenway M (2002) Metal accumulation in aquatic macrophytes from southeast Queensland, Australia. Chemosphere 48:653–663

    Article  CAS  PubMed  Google Scholar 

  12. Singh VK, Singh MB, Mishra VK (2009) Aquatic pollution and physic chemical characteristics of effluent in coal mining area, Sonebhadra (U.P.). Uttar Pradesh Geogr J 14:1–6

    Google Scholar 

  13. Ayoma I, Hisao N, Ma SY (1986) Uptake of nitrogen and phosphate, and water purification capacity of water hyacinth. Ber Ohara Inst Landw Biol 19:77–89

    Google Scholar 

  14. Ayoma I, Nishizaki H, Yogi M (1987) Uptake of nitrogen and phosphate and water purification capacity by water hyacinth (Eichhornica crassipes (Mart.) Solms.). Soil Fertility 50:345–349

    Google Scholar 

  15. Alnozaily F, Alaerts G, Veenstra S (2000) Performance of duckweed covered sewage lagoons-II. Nitrogen and phosphorus balance and plant productivity. Water Res 34(10):2734–2741

    Article  CAS  Google Scholar 

  16. Smith MD, Moelyowati I (2001) Duckweed based wastewater treatment (DWWT): design guidelines for hot climates. Water Sci Technol 43(11):291–300

    CAS  PubMed  Google Scholar 

  17. Pandey AK (2015) Waste water management through aquatic macrophytes. Int Res J Environ Sci 4(3):41–46

    Google Scholar 

  18. Brix H, Schierup HH (1989) The use of aquatic macrophytes in water pollution control. Ambio 18:100–107

    Google Scholar 

  19. Gersberg RM, Elkins BV, Lyon SR, Goldman CR (1986) Role of aquatic plants in waste water treatment by artificial wetlands. Water Res 20:363–368

    Article  CAS  Google Scholar 

  20. Reddy KR, De Busk WF (1985) Nutrient removal potential of selected aquatic macrophytes. J Environ Qual 14:459–462

    Article  CAS  Google Scholar 

  21. Reddy KR, De Busk WF (1987) State of the art utilization of aquatic plants in water pollution control. Water Sci Technol 18:61–79

    Google Scholar 

  22. Tripathi BD, Shukla SC (1991) Biological treatment of waste water by selected aquatic plants. Environ Pollut 69(1):69–78

    Article  CAS  PubMed  Google Scholar 

  23. Tripathi BD, Srivastava J, Mishra K (1991) Nitrogen and phosphorus removal capacity of four chosen aquatic macrophytes in tropical freshwater ponds. Environ Conserv 18(2):143–147

    Article  CAS  Google Scholar 

  24. Tripathi BD, Mishra K, Pandey VS, Srivastava J (1990) Effect of tissue-N content on decomposition of water hyacinth (Eichhornia crassipes Mart) Solms. Geobios 17(2–3):67–69

    Google Scholar 

  25. Jain SK, Vasudevan P, Jha NK (1990) Azolla pinnata and Lemna minor for removal of lead and zinc from polluted water. Water Res 24(2):177–183

    Article  CAS  Google Scholar 

  26. Maine M, Duarte MV (2001) Cadmium uptake by floating macrophytes. Water Res 35(11):2629–2634

    Article  CAS  PubMed  Google Scholar 

  27. Fayed SE, Hussaini AS (1985) Accumulation of Cu, Zn, Cd and Pb by aquatic macrophytes. Environ Int 11(1):77–87

    Article  CAS  Google Scholar 

  28. Garg P, Chandra P (1990) Toxicity and accumulation of chromium in Ceratophyllum demersum L. Bull Environ Contam Toxicol 44(3):473–478

    Article  CAS  PubMed  Google Scholar 

  29. Mishra VK, Upadhyay AR, Pathak V, Tripathi BD (2008) Phytoremediation of Hg and As from tropical opencast coalmine effluents through naturally occurring aquatic macrophytes. Water Air Soil Pollut 192(1–4):303–314

    Article  CAS  Google Scholar 

  30. De Wet LPD, Schoonbee HJ, Pretorius J (1990) Bioaccumulation of selected heavy metals by the water fern, Azolla filiculoides Lam, in a wetland ecosystem affected by sewage mine and industrial pollution. Water SA WASADV 16(14):281–286

    Google Scholar 

  31. Jana S (1988) Accumulation of Hg and Cr by three aquatic species and subsequent changes in several physiological and Biochemical parameters. Wat Air Soil Pollut 38(1–2):105–109

    CAS  Google Scholar 

  32. Lytle CM, Lytle FW, Yang N, Quian JH, Hansen D, Zayed A, Terry N (1998) Reduction of Cr(VI) to Cr(III) by wetland plants: potential for in situ heavy metal detoxification. Environ Sci Technol 32(20):3087–3093

    Article  CAS  Google Scholar 

  33. Chandra P, Sinha S (1992) Assessment of heavy metal (Cu, Cd, Pb, Cr, Mn) uptake by wetland plant Bacopa monnieri from artificially contaminated sediments. In: Proc. IV INTECOL. International wetland conference, Columbus, p 118

    Google Scholar 

  34. Zayed A, Gowthaman S, Terry N (1998) Phytoaccumulation of trace elements by wetland plants: I. Duck weed. J Environ Qual 27:715–721

    Article  CAS  Google Scholar 

  35. Hassan SH, Talat M, Rai S (2007) Sorption of cadmium and zinc from aqueous solutions by water hyacinth (Eichhornia crassipes). Bioresour Technol 98(4):918–928

    Article  Google Scholar 

  36. Miretzky P, Saralegui A, Fernández Cirelli A (2004) Aquatic macrophytes potential for the simultaneous removal of heavy metals (Buenos Aires, Argentina). Chemosphere 57(8):997–1005

    Article  CAS  PubMed  Google Scholar 

  37. Mishra VK, Tripathi BD, Kim K (2009) Removal and accumulation of mercury by aquatic macrophytes from an open cast coal mine effluent. J Hazard Mater 172:749–754

    Article  CAS  PubMed  Google Scholar 

  38. Bala R, Thukral AK (2011) Phytoremediation of Cr (VI) by Spirodela polyrrhiza (L.) Schleiden employing reducing and chelating agents. Int J Phytoremediation 13(5):465–491

    Article  CAS  PubMed  Google Scholar 

  39. Rezania S, Ponraj M, Talaiekhozani A, Mohamad S, Din MFM, Taib SM, Sabbagh F, Sairan FM (2015) Perspectives of phytoremediation using water hyacinth for removal of heavy metals, organic and inorganic pollutants in wastewater. J Environ Manage 163:125–133

    Article  CAS  PubMed  Google Scholar 

  40. Tauqeer HM, Ali S, Rizwan M, Ali Q, Saeed R, Iftikar U, Ahmad R, Farid M, Abbasi H (2016) Phytoremediation of heavy metals by Alternanthera bettzickiana: growth and physiological response. Ecotoxicol Environ Saf 126:138–146

    Article  CAS  PubMed  Google Scholar 

  41. Harguinteguy CA, Pignata ML, Fernández-Cirelli A (2015) Nickel, lead and zinc accumulation and performance in relation to their use in phytoremediation by macrophytes Myriophyllum aquaticum and Egeria densa. Ecol Eng 82:512–516

    Article  Google Scholar 

  42. Vymazal J, Březinová T (2016) Accumulation of heavy metals in aboveground biomass of Phragmites australis in horizontal flow constructed wetlands for wastewater treatment: a review. Chem Eng J 290:232–242

    Article  CAS  Google Scholar 

  43. Drost W, Matzke M, Backhaus M (2007) Heavy metal toxicity to Lemna minor: studies on the time dependence of growth inhibition and the recovery after exposure. Chemosphere 67(1):36–43

    Article  CAS  PubMed  Google Scholar 

  44. Tiwari S, Dixit S, Verma N (2007) An effective means of biofiltration of heavy metal contaminated water bodies using aquatic weed Eichhornia crassipes. Environ Monit Assess 129:253–256

    Article  CAS  PubMed  Google Scholar 

  45. Hasan SH, Deeksha R, Talat M (2010) Water hyacinth biomass for the biosorption of hexavalent chromium: optimization of process parameters. Bioresources 5(2):563–575

    CAS  Google Scholar 

  46. Elangovan R, Philip L, Chandraraj K (2008) Biosorption of chromium species by aquatic weeds: kinetics and mechanism studies. J Hazard Mater 152:100–112

    Article  CAS  PubMed  Google Scholar 

  47. Mahmood T, Malik SA, Hussain ST (2010) Biosorption and recovery of heavy metals from aqueous solutions by Eichhornia crassipes (water hyacinth) ash. Bioresoures 5(2):1244–1256

    CAS  Google Scholar 

  48. Kadirvelu K, Kanmani P, Senthilkumar P, Subburam V (2004) Separation of mercury (II) from aqueous solution by adsorption onto an activated carbon prepared from Eichhornia crassipes. Adsorp Sci Technol 22:207–222

    Article  CAS  Google Scholar 

  49. Jadia CD, Fulekar MH (2009) Review on phytoremediation of heavy metals: recent techniques. Afr J Biotechnol 8(6):921–930

    CAS  Google Scholar 

  50. Kim Y, Kim WJ (2000) Roles of water hyacinths and their roots for reducing algal concentration in the effluent from waste stabilization ponds. Water Res 34(13):3285–3294

    Article  CAS  Google Scholar 

  51. Mishra VK, Tripathi BD (2008) Concurrent removal and accumulation of heavy metals by the three aquatic macrophytes. Biores Technol 99:7091–7097

    Article  CAS  Google Scholar 

  52. Mishra VK, Tripathi BD (2009) Accumulation of chromium and zinc from aqueous solutions using water hyacinth (Eichhornia crassipes). J Hazard Mater 164:1059–1063

    Article  CAS  PubMed  Google Scholar 

  53. Axtell N, Sternberg S, Claussen K (2003) Lead and nickel removal using Microspora and Lemna minor. Biores Technol 89:41–48

    Article  CAS  Google Scholar 

  54. Horvat T, Vidaković-Cifrek Z, Orescanin V, Tkalec M, Pevalek-Kozlina B (2007) Toxicity assessment of heavy metal mixtures by Lemna minor L. Sci Total Environ 384(1–3):229–238

    Article  CAS  PubMed  Google Scholar 

  55. Naumann B, Eberius M, Appenroth KJ (2007) Growth rate based dose–response relationships and EC-values of ten heavy metals using the Duckweed growth inhibition test (ISO 20079) with Lemna minor L. clone St. J Plant Physiol 164:1656–1664

    Article  CAS  PubMed  Google Scholar 

  56. Kaur L, Kasturi G, Sharma S (2012) Role of pH in the accumulation of lead and nickel by common Duckweed (Lemna minor). Int J Bioassays 1(12):191–195

    Google Scholar 

  57. Hou W, Chen X, Song G, Wang Q, Chang CC (2007) Effects of copper and cadmium on heavy metal polluted water body restoration by Duckweed (Lemna minor) physiology. Plant Physiol Biochem 45:62–69

    Article  CAS  PubMed  Google Scholar 

  58. Zimmo OR, van der Steen NP, Gijz HJ (2003) Comparison of ammonia volatilisation rates in algae and duckweed-based waste stabilisation ponds treating domestic wastewater. Water Res 37:4587–4594

    Article  CAS  PubMed  Google Scholar 

  59. Aquatic plant toxicity test using LemnaSpp (1996) Tiers I and II-OPPTS 850.4400. United states Environmental protection Agency Prevention, pesticides and Toxic substances Unit, Newyork, 9p

    Google Scholar 

  60. Sinha S, Basant A, Malik A, Singh KP (2009) Multivariate modeling of chromium induced oxidative stress and biochemical changes in plants of Pistia stratiotes L. Ecotoxicology 18:555–566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Sinha S, Saxena R, Singh S (2002) Comparative studies on accumulation of Cr from metal solution and Tannery effluent under repeated metal exposure by aquatic plants: its toxic effects environ. Monitor Assess 80:17–31

    Article  CAS  Google Scholar 

  62. Prasad MNV, Freitas HMD (2003) Metal hyperaccumulation in plants-biodiversity prospecting for phytoremediation technology. Electr J Biotech 6:285–321

    Article  Google Scholar 

  63. Quinones E, Silva EA, Palacio SM, Modenes AN, Rizzutto MA, Rossi FL, Szymanski N, Costa Jr. IL, Thome LP, Castro JKD (2003) Removal of chromium ions by three aquatic macrophytes from an aqueous solution. Brazilian Synchrotron Light Lab. LNLS, Activity Report, pp 1–2

    Google Scholar 

  64. Mufarrege MM, Hadad HR, Maine MA (2010) Response of Pistia stratiotes to heavy metals (Cr, Ni, and Zn) and P. Arch Environ Contam Toxicol 58:53–61

    Article  CAS  PubMed  Google Scholar 

  65. Singh G, Sinha A (2011) Phytoremediation of chromium (VI)-laden waste by Eichhornia crassipes. Int J Environ Tech Manag 14:33–42

    Article  CAS  Google Scholar 

  66. Nurhayati P, Abimanyu S, Kaswati S, Fajr IR (2012) Water lettuce (P. stratiotes L.) potency as one of ecofriendly phytoextraction absorbers of zinc heavy metal to solve industrial waste problem in Indonesia. Inter Conf Environ Biomed Biotech 41:151–156

    Google Scholar 

  67. Skinner K (2007) Mercury uptake and accumulation by four species of aquatic plants. Environ Pollut 145:234–237

    Article  CAS  PubMed  Google Scholar 

  68. Maine MA, Duarte MV, Sue NL (2001) Cadmium uptake by floating macrophytes. Water Res 35(11):2629–2634

    Article  CAS  PubMed  Google Scholar 

  69. Pabby A, Ahluwalia AS, Dua S (2003) Current status of Azolla taxonomy. In: Ahluwalia AS (ed) Phycology: principles, processes and applications. Daya Publishers, India, pp 48–63

    Google Scholar 

  70. Sood A, Ahluwalia AS (2009) Cyanobacterial–plant symbioses with emphasis on Azolla-Anabaena symbiotic system. Indian Fern J 26:166–178

    Google Scholar 

  71. Ahluwalia AS, Pabby A, Dua S (2002) Azolla: a green gold mine with diversified applications. Indian Fern J 19:1–9

    Google Scholar 

  72. Pabby A, Prasanna R, Singh PK (2004) Biological significance of Azolla and its utilization in agriculture. Proc Indian Natl Sci Acad B 70:301–335

    Google Scholar 

  73. Padmesh TVN, Vijayraghavan K, Sekaran G, Velan M (2006) Application of Azolla rongpong on biosorption of acid red 88, acid green 3, acid orange 7 and acid blue 15 from synthetic solutions. Chem Eng J 122(1–2):55–63

    Article  CAS  Google Scholar 

  74. Rai PK, Tripathi BD (2009) Comparative assessment of Azolla pinnata and Vallisneria spiralis in Hg removal from G.B. Pant Sagar of Singrauli Industrial region, India. Environ Monit Assess 148(1):75–84

    Article  CAS  PubMed  Google Scholar 

  75. Mashkani SG, Ghazvini PTM (2009) Biotechnological potential of Azolla filiculoides for biosorption of Cs and Sr: application of micro-PIXE for measurement of Biosorption. Bioresour Technol 100(6):1915–1921

    Article  CAS  Google Scholar 

  76. Sood A, Pabbi S, Uniyal PL (2011) Effect of paraquat on lipid peroxidation and antioxidant enzymes in aquatic fern Azolla microphylla Kual. Russian J Plant Physiol 58:667–673

    Article  CAS  Google Scholar 

  77. Sood A, Uniyal PL, Prasanna R, Ahluwalia AS (2012) Phytoremediation potential of aquatic macrophyte, Azolla. Ambio 41:122–137

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Virendra Kumar Mishra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mishra, V.K., Shukla, R. (2016). Aquatic Macrophytes for the Removal of Heavy Metals from Coal Mining Effluent. In: Ansari, A., Gill, S., Gill, R., Lanza, G., Newman, L. (eds) Phytoremediation. Springer, Cham. https://doi.org/10.1007/978-3-319-40148-5_5

Download citation

Publish with us

Policies and ethics