Skip to main content

Biological Approaches for Remediation of Metal-Contaminated Sites

  • Chapter
  • First Online:
Phytoremediation

Abstract

Environmental pollution by heavy metals and metalloids is a severe problem posing a threat to ecosystems and human health. Remediation strategies are necessary to protect from their toxic effects and in this context, biological remediation has tremendous potential. It uses plants and microorganisms to remove or contain toxic contaminants and is considered as the most effective method because it is a natural process, environmentally friendly, has a low cost, and wide public acceptance. This chapter aims to provide a comprehensive review of some of the promising processes mediated by plant and microbes to remediate metal-contaminated environments. Some biological processes used for the decontamination of organic compounds will also be included because of their relevance and potential common use for both purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pinto AP, Varennes A, Fonseca R, Martins Teixeira D (2015) Phytoremediation of soils contaminated with heavy metals: techniques and strategies. In: Ansari AA, Gill SS, Gill R, Lanza GR, Newman L (eds) Management of environmental contaminants, vol 1. Springer, Wien, pp 133–155

    Google Scholar 

  2. Verkleij JAC, Prast JE (1990) Cadmium tolerance and co-tolerance in Silene vulgaris. New Phytol 111:637–645

    Article  Google Scholar 

  3. Ashraf M, Ozturk M, Ahmad MSA (2010) Toxins and their phytoremediation. In: Ashraf M, Ozturk M, Ahmad MSA (eds) Plant adaptation and phytoremediation. Springer, New York, pp 1–32

    Google Scholar 

  4. Adriano DC (2001) Trace elements in terrestrial environments: biogeochemistry, bioavailability and risks of metals. Springer, Berlin

    Book  Google Scholar 

  5. Park JH, Lamb D, Paneerselvam P, Choppala G, Bolan N, Chung JW (2011) Role of organic amendments on enhanced bioremediation of heavy metal(loid) contaminated soils. J Hazard Mater 185:549–574

    Article  CAS  PubMed  Google Scholar 

  6. Pendias AK (2001) Trace elements in soils and plants. CRC, New York

    Google Scholar 

  7. Modaihsh A, Al-Swailem M, Mahjoub M (2004) Heavy metal contents of commercial inorganic fertilizer used in the Kingdom of Saudi Arabia. Agric Mar Sci 9:21–25. http://hdl.handle.net/123456789/2334

    Google Scholar 

  8. Yang XE, Feng Y, He Z, Stoffella PJ (2005) Molecular mechanisms of heavy metal hyperaccumulation and phytoremediation. J Trace Elem Med Biol 18:339–353

    Article  CAS  PubMed  Google Scholar 

  9. Chehregani A, Malayeri BE (2007) Removal of heavy metals by native accumulator plants. Int J Agric Biol 9:462–465

    CAS  Google Scholar 

  10. Fulekar M, Singh A, Bhaduri AM (2009) Genetic engineering strategies for enhancing phytoremediation of heavy metals. Afr J Biotechnol 8:529–535

    CAS  Google Scholar 

  11. Sabiha-Javied, Mehmood T, Tufai M, Irfan N (2009) Heavy metal pollution from phosphate rock used for the production of fertilizer in Pakistan. Microchem J 91:94–9

    Article  CAS  Google Scholar 

  12. Wuana RA, Okieimen FE (2011) Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecol :1–20

    Google Scholar 

  13. Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals—concepts and applications. Chemosphere 91:869–881

    Article  CAS  PubMed  Google Scholar 

  14. Sheppard SC, Gaudet C, Sheppard MI, Cureton PM, Wong MP (1992) The development of assessment and remediation guidelines for contaminated soils, a review of the science. Can J Soil Sci 72:359–394

    Article  CAS  Google Scholar 

  15. Dai J, Becquer T, Rouiller JH, Reversat G, Bernhard-Reversat F, Lavelle P (2004) Influence of heavy metals on C and N mineralisation and microbial biomass in Zn-, Pb-, Cu-, and Cd-contaminated soils. Appl Soil Ecol 25:99–109

    Article  Google Scholar 

  16. Alvarenga P, Gonçalves AP, Fernandes RM, de Varennes A, Vallini G, Duarte E, Cunha-Queda AC (2009) Organic residues as immobilizing agents in aided phytostabilization: (I) effects on soil chemical characteristics. Chemosphere 74:1292–1300

    Article  CAS  PubMed  Google Scholar 

  17. Alvarenga P, Palma P, Varennes A, Cunha-Queda AC (2012) A contribution towards the risk assessment of soils from the Sao Domingos Mine (Portugal): chemical, microbial and ecotoxicological indicators. Environ Pollut 161:50–56

    Article  CAS  PubMed  Google Scholar 

  18. Lorestani B, Cheraghi M, Yousefi N (2012) The potential of phytoremediation using hyperaccumulator plants: a case study at a lead-zinc mine site. Int J Phytoremediation 14:786–795

    Article  CAS  PubMed  Google Scholar 

  19. Khan MS, Zaidi A, Wani PA, Oves M (2009) Role of plant growth promoting rhizobacteria in the remediation of metal contaminated soils. Environ Chem Lett 7:1–19

    Article  CAS  Google Scholar 

  20. Zaidi A, Wani PA, Khan MS (2012) Bioremediation: a natural method for the management of polluted environment (Chapter 6). In: Zaidi A, Wani PA, Khan MS (eds) Toxicity of heavy metals to legumes and bioremediation. Springer, Wien, pp 101–114

    Google Scholar 

  21. El-Syed OH, Refaat HM, Swellam MA, Amer MM, Attwa AI, El-Awady ME (2011) Bioremediation of zinc by Streptomyces aureofacienes. J Appl Sci 11:873–877

    Article  CAS  Google Scholar 

  22. Huq SMI, Abdullah MB, Joardar JC (2007) Bioremediation of arsenic toxicity by algae in rice culture. Land Contam Reclamat 15:327–333

    Article  Google Scholar 

  23. Vamerali T, Bandiera M, Mosca G (2010) Field crops for phytoremediation of metal-contaminated land. A review. Environ Chem Lett 8:1–17

    Article  CAS  Google Scholar 

  24. Bhargava A, Carmona FF, Bhargava M, Srivastava S (2012) Approaches for enhanced phytoextraction of heavy metals. J Environ Manage 105:103–120

    Article  CAS  PubMed  Google Scholar 

  25. Chaney RL, Angle JS, Broadhurst CL, Peters CA, Tappero RV, Sparks DL (2007) Improved understanding of hyperaccumulation yields commercial phytoextraction and phytomining technologies. J Environ Qual 36:1429–1443

    Article  CAS  PubMed  Google Scholar 

  26. Wang WS, Shan XQ, Wen B, Zhang SZ (2003) Relationship between the extractable metals from soils and metals taken up by maize roots and shoots. Chemosphere 53:523–530

    Article  CAS  PubMed  Google Scholar 

  27. Shao HB, Chu LY, Lu ZH, Kang CM (2008) Primary antioxidant free radical scavenging and redox signaling pathways in higher plant cells. Int J Biol Sci 4:8–14

    Article  CAS  Google Scholar 

  28. Sharma SS, Dietz KJ (2009) The relationship between metal toxicity and cellular redox imbalance. Trends Plant Sci 14:43–50

    Article  CAS  PubMed  Google Scholar 

  29. Ahmad P, Umar S, Sharma S (2010) Mechanism of free radical scavenging and role of phytohormones in plants under abiotic stresses. In: Ashraf M, Ozturk M, Ahmad MSA (eds) Plant adaptation and phytoremediation. Springer, New York

    Google Scholar 

  30. Guerra F, Gainza F, Pérez R, Zamudio F (2011) Phytoremediation of heavy metals using poplars (Populus Spp): a glimpse of the plant responses to copper, cadmium and zinc stress. In: Golubev IA (ed) Handbook of phytoremediation. Nova Science, New York, pp 387–414

    Google Scholar 

  31. Kadukova J, Kavuličova J (2011) Phytoremediation of heavy metal contaminated soils—plant stress assessment. In: Golubev IA (ed) Handbook of phytoremediation. Nova Science, New York, pp 185–222

    Google Scholar 

  32. Pagliano C, Raviolo M, DallaVecchia F, Gabbrielli R, Gonnelli C, Rascio N et al (2006) Evidence for PSII-donor-side damage and photoinhibition induced by cadmium treatment on rice (Oryza sativa L.). J Photochem Photobiol B: Biol 84:70–78

    Article  CAS  Google Scholar 

  33. Rascio N, Navari-Izzo F (2011) Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting? Plant Sci 180:169–181

    Article  CAS  PubMed  Google Scholar 

  34. Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  CAS  PubMed  Google Scholar 

  35. Neil S, Desikan R, Hancock J (2002) Hydrogen peroxide signalling. Curr Opin Plant Biol 5:388–395

    Article  Google Scholar 

  36. Pitzschke A, Hirt H (2006) Mitogen-activated protein kinases and reactive oxygen species signaling in plants. Plant Physiol 141:351–356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Navari-Izzo F, Quartacci MF, Pinzino C, Dalla Vecchia F, Sgherri C (1998) Thylakoid-bound and stromal antioxidative enzymes in wheat treated with excess of copper. Physiol Plant 104:630–638

    Article  CAS  Google Scholar 

  38. Navari-Izzo F, Pinzino C, Quartacci MF, Sgherri C (1999) Superoxide and hydroxyl radical generation, and superoxide dismutase in PSII membrane fragments from wheat. Free Radic Res 31:S3–S9

    Article  CAS  PubMed  Google Scholar 

  39. Watanabe T, Osaki M (2002) Mechanism of adaptation to high aluminium condition in native plant species growing in acid soils: a review. Commun Soil Sci Plant Anal 33:1247–1260

    Article  CAS  Google Scholar 

  40. Dalla Vecchia F, La Rocca N, Moro I, De Faveri S, Andreoli C, Rascio N (2005) Morphogenetic, ultrastructural and physiological damages suffered by submerged leaves of Elodea canadensis exposed to cadmium. Plant Sci 168:329–338

    Article  CAS  Google Scholar 

  41. Rascio N, Dalla Vecchia F, La Rocca N, Barbato R, Pagliano C, Raviolo M et al (2008) Metal accumulation and damage in rice (c.v. Vialone nano) seedlings exposed to cadmium. Environ Exp Bot 62:267–278

    Article  CAS  Google Scholar 

  42. Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53:1–11

    Article  CAS  PubMed  Google Scholar 

  43. Sgherri C, Cosi E, Navari-Izzo F (2003) Phenols and antioxidative status of Raphanus sativus grown in copper excess. Physiol Plant 118:21–28

    Article  CAS  PubMed  Google Scholar 

  44. Bricker TJ, Pichtel J, Brown HJ, Simmons MJ (2001) Phytoextraction of Pb and Cd from a superfund soil: effects of amendments and croppings. J Environ Sci Health A 36:1597–1610

    Article  CAS  Google Scholar 

  45. Yadav SK (2010) Heavy metals toxicity in plants: an overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. S Afr J Bot 76:167–179

    Article  CAS  Google Scholar 

  46. Arisi ACM, Mocquot B, Lagriffoul A, Mench M, Foyer CH, Jouanin L (2000) Responses to cadmium in leaves of transformed poplars overexpressing γ-glutamylcysteine synthetase. Physiol Plant 109:143–149

    Article  CAS  Google Scholar 

  47. Pulford ID, Watson C (2003) Phytoremediation of heavy metal-contaminated land by trees—a review. Environ Int 29:529–540

    Article  CAS  PubMed  Google Scholar 

  48. Freeman JL, Persans MW, Nieman K, Albrecht C, Peer W, Pickering IJ et al (2004) Increased glutathione biosynthesis plays a role in nickel tolerance in Thlaspi nickel hyperaccumulators. Plant Cell 16:2176–2191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Prasad MNV, Pratas J, Freitas H (2006) Trace elements in plants and soils of abandoned mines in portugal: significance for phytomanagement and biogeochemical prospecting. In: Prasad MNV, Sajwan KS, Naidu R (eds) Trace elements in the environment: biogeochemistry, biotechnology and bioremediation. CRC, Boca Raton, pp 507–522

    Google Scholar 

  50. Gekeler W, Grill E, Winnacker EL, Zenk MH (1998) Algae sequester heavy metals via synthesis of phytochelatin complexes. Arch Microbiol 150:197–202

    Article  Google Scholar 

  51. Grill E, Thumann J, Winnacker EL, Zenk MH (1988) Induction of heavy metal binding phytochelatins by inoculation of cell cultures in standard media. Plant Cell Rep 7:375–378

    CAS  PubMed  Google Scholar 

  52. Hirata K, Tsuji N, Miyamoto K (2005) Biosynthetic regulation of phytochelatins, heavy metal-binding peptides. J Biosci Bioeng 100:593–599

    Article  CAS  PubMed  Google Scholar 

  53. Salt DE, Rauser WE (1995) MgATP-dependent transport of phytochelatins across the tonoplast of oat roots. Plant Physiol 107:1293–1301

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Cobbett C, Goldsbrough P (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol 53:159–182

    Article  CAS  PubMed  Google Scholar 

  55. Veglio F, Beolchini F, Gasbarro A (1997) Biosorption of toxic metals: an equilibrium study using free cells of Arthrobacter sp. Process Biochem 32:99–105

    Article  CAS  Google Scholar 

  56. Gadd GM (2000) Bioremedial potential of microbial mechanisms of metal mobilization and immobilization. Curr Opin Biotechnol 11:271–279

    Article  CAS  PubMed  Google Scholar 

  57. Lim PE, Mak KY, Mohamed N, Noor AM (2003) Removal and speciation of heavy metals along the treatment path of wastewater in subsurface-flow constructed wetlands. Water Sci Technol 48:307–313

    CAS  PubMed  Google Scholar 

  58. Malik A (2004) Metal bioremediation through growing cells. Environ Int 30:261–278

    Article  CAS  PubMed  Google Scholar 

  59. Lin CC, Lin HL (2005) Remediation of soil contaminated with the heavy metal (Cd2+). J Hazard Mater 122:7–15

    Article  CAS  PubMed  Google Scholar 

  60. Dixit R, Wasiullah, Malaviya D, Pandiyan K, Singh UB, Sahu A et al (2015) Bioremediation of heavy metals from soil and aquatic environment: an overview of principles and criteria of fundamental processes. Sustainability 7:2189–2212

    Article  CAS  Google Scholar 

  61. Singh NK, Singh RP (2016) Potential of plants and microbes for the removal of metals: eco-friendly approach for remediation of soil and water (Chapter 19). In: Ahmad P (ed) Plant metal interaction emerging remediation techniques. Elsevier, Amsterdam, pp 469–482

    Google Scholar 

  62. Scott JA, Karanjkar AM (1992) Repeated cadmium biosorption by regenerated Enterobacter aerogenes biofilm attached to activated carbon. Biotechnol Lett 14:737–740

    Article  CAS  Google Scholar 

  63. Ajmal M, Rafaqat AK, Bilquees AS (1996) Studies on removal and recovery of Cr (VI) from electroplating wastes. Water Res 30:1478–1482

    Article  CAS  Google Scholar 

  64. Dilek FB, Gokcay CF, Yetis U (1998) Combined effects of Ni(II) and Cr(VI) on activated sludge. Water Res 32:303–312

    Article  CAS  Google Scholar 

  65. Volesky B, Holan ZR (1995) Biosorption of heavy metals. Biotechnol Prog 11:235–250

    Article  CAS  PubMed  Google Scholar 

  66. Huang C, Huang CP (1996) Application of Aspergillus oryzae and Rhizopus oryzae for Cu (II) removal. Water Res 30:1985–1990

    Article  CAS  Google Scholar 

  67. Tunali S, Akar T, Oezcan AS, Kiran I, Oezcan A (2006) Equilibrium and kinetics of biosorption of lead(II) from aqueous solutions by Cephalosporium aphidicola. Sep Purif Technol 47:105–112

    Article  CAS  Google Scholar 

  68. Akar T, Tunali S, Cabuk A (2007) Study on the characterization of lead (II) biosorption by fungus Aspergillus parasiticus. Appl Biochem Biotechnol 136:389–406

    Article  CAS  PubMed  Google Scholar 

  69. Kelly DJA, Budd K, Lefebvre DD (2006) The biotransformation of mercury in pH-stat cultures of microfungi. Can J Bot 84:254–260

    Article  CAS  Google Scholar 

  70. Sun LN, Zhang YF, He LY, Chen ZJ, Wang QY, Qian M et al (2010) Genetic diversity and characterization of heavy metal-resistant-endophytic bacteria from two copper-tolerant plant species on copper mine wasteland. Bioresour Technol 101:501–509

    Article  CAS  PubMed  Google Scholar 

  71. Garbisu C, Alkorta I (2001) Phytoextraction: a cost-effective plant-based technology for the removal of metals from the environment. Bioresour Technol 77:229–236

    Article  CAS  PubMed  Google Scholar 

  72. Silver S (1996) Bacterial heavy metal resistance: new surprises. Annu Rev Microbiol 50:753–789

    Article  CAS  PubMed  Google Scholar 

  73. Pérez de Mora A, Burgos P, Madejón E, Cabrera F, Jaeckel P, Schloter M (2006) Microbial community structure and function in soil contaminated by heavy metals: effects on plant growth and different amendments. Soil Biol Biochem 38:327–341

    Article  CAS  Google Scholar 

  74. Pérez-de-Mora E, Burgos MP, Cabrera F (2006) Trace element availability and plant growth in a mine-spill contaminated soil under assisted natural remediation I. Soils. Sci Total Environ 363:28–37

    Article  PubMed  CAS  Google Scholar 

  75. Vargas-García MC, López MJ, Suárez-Estrella F, Moreno J (2012) Compost as a source of microbial isolates for the bioremediation of heavy metals: in vitro selection. Sci Total Environ 431:62–67

    Article  CAS  Google Scholar 

  76. Alvarez PJJ, Illman WA (2006) Bioremediation technologies. In: Schnoor JL, Zehnder, (eds) Bioremediation and natural attenuation. Process fundamentals and mathematical models. An environmental science and technology. A Wiley-Interscience series of texts and monographs. Wiley, Hoboken, pp 351–455

    Google Scholar 

  77. Lloyd JR (2002) Bioremediation of metals: the application of microorganisms that make and break minerals. Microbiol Today 29:67–69

    Google Scholar 

  78. Bezza FA, Chirwa EMN (2015) Production and applications of lipopeptide biosurfactant for bioremediation and oil recovery by Bacillus subtilis CN2. Biochem Eng J 101:168–178

    Article  CAS  Google Scholar 

  79. Haferburg G, Kothe E (2007) Microbes and metals: interactions in the environment. J Basic Microbiol 47:453–467

    Article  CAS  PubMed  Google Scholar 

  80. Gadd GM (2001) Accumulation and transformation of metals by microorganisms. In: Rehm HJ (ed) Biotechnology, a multi-volume comprehensive treatise, references, vol 10. Wiley-VCH Verlag, Weinheim, pp 225–264

    Google Scholar 

  81. Colin VL, Villegas LB, Abate CM (2012) Indigenous microorganisms as potential bioremediators for environments contaminated with heavy metals. Int Biodeterior Biodegrad 69:28–37

    Article  CAS  Google Scholar 

  82. Tabak HH, Lens P, Van Hullebusch ED, Dejonghe W (2005) Developments in bioremediation of soils and sediments polluted with metals and radionuclides-1. Microbial processes and mechanisms affecting bioremediation of metal contamination and influencing metal toxicity and transport. Rev Environ Sci Biotechnol 4:115–156

    Article  CAS  Google Scholar 

  83. Viti C, Giovannetti L (2001) The impact of chromium contamination on soil heterotrophic and photosynthetic microorganisms. Ann Microbiol 51:201–213

    CAS  Google Scholar 

  84. Rhodes CJ (2013) Applications of bioremediation and phytoremediation. Sci Prog 96:417–427

    Article  CAS  PubMed  Google Scholar 

  85. Fomina M, Charnock J, Bowen AD, Gadd GM (2007) X-ray absorption spectroscopy (XAS) of toxic metal mineral transformations by fungi. Environ Microbiol 9:308–321

    Article  CAS  PubMed  Google Scholar 

  86. Kumar R, Bhatia D, Singh R, Bishnoi NR (2012) Metal tolerance and sequestration of Ni(II), for treatment and disposal of heavy metals polluted sediments. J Environ Sci Zn(II) and Cr(VI) ions from simulated and electroplating wastewater in batch pro- 2009;21:877–83. cess: kinetics and equilibrium study. Int Biodeterior Biodegrad 66:82–90

    Article  CAS  Google Scholar 

  87. Taştan BE, Ertuğrul S, Dönmez G (2010) Effective bioremoval of reactive dye and heavy metals by Aspergillus versicolor. Bioresour Technol 101:870–876

    Article  PubMed  CAS  Google Scholar 

  88. Skorik YA, Pestov AV, Yatluk YG (2010) Evaluation of various chitin-glucan derivatives from Aspergillus niger as transition metal adsorbents. Bioresour Technol 101:1769–1775

    Article  CAS  PubMed  Google Scholar 

  89. Guimarães-Soares L, Felicia H, Bebianno MJ, Cassio F (2006) Metal-binding proteins and peptides in the aquatic fungi Fontanospora fusiramosa and Flagellopora curta exposed to severe metal stress. Sci Total Environ 372:148–156

    Article  PubMed  CAS  Google Scholar 

  90. Arwidsson Z, Johansson E, Von Kronhelm T, Allard B, Van Hees P (2010) Remediation of metal contaminated soil by organic metabolites from fungi I—production of organic acids. Water Air Soil Pollut 205:215–226

    Article  CAS  Google Scholar 

  91. Sun F, Shao Z (2007) Biosorption and bioaccumulation of lead by Penicillium sp. Psf-2 isolated from the deep sea sediment of the Pacific Ocean. Extremophiles 11:853–858

    Article  PubMed  Google Scholar 

  92. Leitão AL (2009) Potential of Penicillium species in the bioremediation field. Int J Environ Res Public Health 6:1393–1417

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Helmisaari HS, Salemaa M, Derome J, Kiikkilä O, Uhligh C, Nieminem T (2007) Remediation of heavy metal-contaminated forest soil using recycled organic matter and native woody plants. J Environ Qual 36:1145–1153

    Article  CAS  PubMed  Google Scholar 

  94. Farrell M, Perkins WT, Hobbs PJ, Griffith GW, Jones D (2010) Migration of heavy metals in soil as influenced by compost amendments. Environ Pollut 158:55–64

    Article  CAS  PubMed  Google Scholar 

  95. Wang J, Chen C (2009) Biosorbents for heavy metals removal and their future. Biotechnol Adv 27:196–226

    Google Scholar 

  96. Neagoe A, Merten D, Iordache V, Büchel G (2009) The effect of bioremediation methods involving different degrees of soil disturbance on the export of metals by leaching and by plant uptake. Chem Erde-Geochem 69(S2):57–73

    Article  CAS  Google Scholar 

  97. Shi W, Shao H, Li H, Shao M, Su S (2009) Progress in the remediation of hazardous heavy metal-polluted soils by natural zeolite. J Hazard Mater 170:1–6

    Article  CAS  PubMed  Google Scholar 

  98. Wei SH, Zhou QX, Wang X, Cao W, Ren LP, Song YF (2004) Potential of weed species applied to remediation of soils contaminated with heavy metals. J Environ Sci 16:868–873

    Google Scholar 

  99. Wu G, Kang H, Zhang X, Shao H, Chu L, Ruan C (2010) A critical review on the bio- removal of hazardous heavy metals from contaminated soils: issues, progress, eco-environmental concerns and opportunities. J Hazard Mater 174:1–8

    Article  CAS  PubMed  Google Scholar 

  100. USEPA (1999) Use of monitored natural attenuation at superfund, RCRA corrective action, and underground storage tank sites. Oswer Directive. 9200.4-17P. US Environmental Protection Agency, Office of Research and Development, Cincinnati

    Google Scholar 

  101. Boparai HK, Shea PJ, Comfort SD, Machacek TA (2008) Sequencing zerovalent iron treatment with carbon amendments to remediate agrichemical-contaminated soil. Water Air Soil Pollut 193:189–196

    Article  CAS  Google Scholar 

  102. Khan FI, Husain T, Hejazi R (2004) An overview and analysis of site remediation technologies. J Environ Manag 71:95–122

    Article  Google Scholar 

  103. Juwarkar AA, Misra RR, Sharma JK (2014) Recent trends in bioremediation. In: Parmar N, Singh A (eds) Geomicrobiology and biogeochemistry. Springer, Wien, pp 81–100

    Google Scholar 

  104. Declercq I, Cappuyns V, Duclos Y (2012) Monitored natural attenuation (MNA) of contaminated soils: state of the art in Europe—a critical evaluation. Sci Total Environ 426:393–405

    Article  CAS  PubMed  Google Scholar 

  105. Gentry TJ, Rensing C, Pepper IL (2004) New approaches for bioaugmentation as a remediation technology. Crit Rev Environ Sci Technol 34(5):447–494

    Article  CAS  Google Scholar 

  106. Vidali M (2001) Bioremediation. An overview. Pure Appl Chem 73:1163–1172

    Article  CAS  Google Scholar 

  107. Salanitro JP, Johnson P, Spinnler GE, Maner PM, Wisniewski HL, Bruce C (2000) Field scale demonstration of enhanced MTBE bioremediation through aquifer bioaugmentation and oxygenation. Environ Sci Technol 34(19):4152–4162

    Article  CAS  Google Scholar 

  108. Dybas MJ, Barcelona M, Bezborodnikov S, Davies S, Forney L, Heuer H et al (1998) Pilot-scale evaluation of bioaugmentation for in-situ remediation of a carbon tetrachloride-contaminated aquifer. Environ Sci Technol 32:3598–3611

    Article  CAS  Google Scholar 

  109. Duba AG, Jackson KJ, Jovanovich MC, Knapp RB, Taylor RT (1996) TCE remediation using in-situ, resting-state bioaugmentation. Environ Sci Technol 30:1982–1989

    Article  CAS  Google Scholar 

  110. Ellis DE, Lutz EJ, Odom JM, Buchanan J, Ronald J, Bartlett CL et al (2000) Bioaugmentation for accelerated in situ anaerobic bioremediation. Environ Sci Technol 34:2254–2260

    Article  CAS  Google Scholar 

  111. Major DW, McMaster ML, Cox EE, Lee BJ, Gentry EE, Hendrickson E et al (2002) Successful field demonstration of bioaugmentation to degrade PCE and TCE to ethene. In: Sixth international in situ and on-site remediation symposium; 2001 Jun 4–7; San Diego, California. Battelle Press, Columbus

    Google Scholar 

  112. Wang T, Sun H, Jiang C, Mao H, Zhang Y (2014) Immobilization of Cd in soil and changes of soil microbial community by bioaugmentation of UV-mutated Bacillus subtilis 38 assisted by biostimulation. Eur J Soil Biol 65:62–69

    Article  CAS  Google Scholar 

  113. Wang T, Sun H, Mao H, Zhang Y, Wang C, Zhang Z et al (2014) The immobilization of heavy metals in soil by bioaugmentation of a UV-mutant Bacillus subtilis 38 assisted by NovoGro biostimulation and changes of soil microbial community. J Hazard Mater 278:483–490

    Article  CAS  PubMed  Google Scholar 

  114. Wang Y, Peng B, Yang Z, Tang C, Chen Y, Liao Q et al (2014) Treatment of Cr(VI) contaminated water with Pannonibacter phragmitetus BB. Environ Earth Sci 71(10):4333–4339

    Article  CAS  Google Scholar 

  115. El-Bestawy E, El-Kheir EA, Abd El-Fatah HI, Hassouna SM (1998) Enhancement of bacterial efficiency for metal removal using mutation techniques. World J Microbiol Biotechnol 14:853–856

    Article  CAS  Google Scholar 

  116. Valls M, De Lorenzo V (2002) Exploiting the genetic and biochemical capacities of bacteria for the remediation of heavy metal pollution. FEMS Microbiol Rev 26:327–338

    Article  CAS  PubMed  Google Scholar 

  117. Krishnaswamy R, Wilson DB (2000) Construction and characterization of an Escherichia coli strain genetically engineered for Ni(II) bioaccumulation. Appl Environ Microbiol 66:5383–5386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Zhao XW, Zhou MH, Li QB, Lu YH, He N, Sun DH, Deng X (2005) Simultaneous mercury bioaccumulation and cell propagation by genetically engineered Escherichia coli. Process Biochem 40:1611–1616

    Article  CAS  Google Scholar 

  119. Yang YN, Ren N, Xue JM, Yang J, Rong BL (2007) Mutation effect of MeV protons on bioflocculant bacteria Bacillus cereus. Nucl Instrum Methods Phys Res, Sect B 262:220–224

    Article  CAS  Google Scholar 

  120. Brierley JA (2008) A perspective on developments in biohydrometallurgy. Hydrometallurgy 94:2–7

    Article  CAS  Google Scholar 

  121. Qiu G, Liu X, Zhou H (2008) Microbial community structure and function in sulfide ore bioleaching systems. Trans Nonferrous Metals Soc China 18:1295–1301

    Article  CAS  Google Scholar 

  122. Jiang C, Sun H, Sun T, Zhang Q, Zhang Y (2009) Immobilization of cadmium in soils by UV-mutated Bacillus subtilis 38 bioaugmentation and NovoGro amendment. J Hazard Mater 167:1170–1177

    Article  CAS  PubMed  Google Scholar 

  123. Yin H, He B, Lu X, Peng H, Ye J, Yang F (2008) Improvement of chromium biosorption by UV–HNO cooperative mutagenesis in Candida utilis. Water Res 42:3981–3989

    Article  CAS  PubMed  Google Scholar 

  124. Reddy KR, Chinthamreddy S, Saichek RE, Cutright TJ (2003) Nutrient amendment for the bioremediation of a chromium-contaminated soil by electrokinetics. Energy Sources 25:931–943

    Article  CAS  Google Scholar 

  125. Roane TM, Josephson KL, Pepper IL (2001) Dual-bioaugmentation strategy to ination on soil microbes and enhanced the proliferation of both enhance remediation of cocontaminated soil. Appl Environ Microbiol 67:3208–3215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Pal S (2010) Use of bio-resources for remediation of soil pollution. Nat Resour 01:110–125

    CAS  Google Scholar 

  127. Juwarkar AA, Jambhulkar HP (2008) Restoration of fly ash dump through biological interventions. Environ Monit Assess 139:355–365

    Article  CAS  PubMed  Google Scholar 

  128. Kadian N, Gupta A, Satya S, Mehta RK, Malik A (2008) Biodegradation of herbicide (atrazine) in contaminated soil using various bioprocessed materials. Bioresour Technol 99:4642–4647

    Article  CAS  PubMed  Google Scholar 

  129. Pimmata P, Reungsang A, Plangklang P (2013) Comparative bioremediation of carbofuran contaminated soil by natural attenuation, bioaugmentation and biostimulation. Int Biodeterior Biodegrad 85:196–204

    Article  CAS  Google Scholar 

  130. Margesin R, Schinner F (2001) Bioremediation (natural attenuation and biostimulation) of diesel-oil-contaminated soil in an Alpine glacier skiing area. Appl Environ Microbiol 67:3127–3133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Anderson RT, Vrionis HA, Ortiz-Bernad I, Resch CT, Long PE, Dayvault R et al (2003) Stimulating the in situ activity of Geobacter species to remove uranium from the groundwater of a uranium-contaminated aquifer. Appl Environ Microbiol 69:5884–5891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Groudev S, Spasova I, Nicolova M, Georgiev P (2010) In situ bioremediation of contaminated soils in uranium deposits. Hydrometallurgy 104:518–523

    Article  CAS  Google Scholar 

  133. Arjoon A, Olaniran AO, Pillay B (2013) Enhanced 1,2-dichloroethane degradation in heavy metal co-contaminated wastewater undergoing biostimulation and bioaugmentation. Chemosphere 93:1826–1834

    Article  CAS  PubMed  Google Scholar 

  134. Roy AS, Baruah R, Borah M, Singh AK, Boruah HPD, Saikia N et al (2014) Bioremediation potential of native hydrocarbon degrading bacterial strains in crude oil contaminated soil under microcosm study. Int Biodeterior Biodegrad 94:79–89

    Article  CAS  Google Scholar 

  135. Andreolli M, Lampis S, Brignoli P, Vallini G (2015) Bioaugmentation and biostimulation as strategies for the bioremediation of a burned woodland soil contaminated by toxic hydrocarbons: a comparative study. J Environ Manage 153:121–131

    Article  CAS  PubMed  Google Scholar 

  136. Kavamura VN, Esposito E (2010) Biotechnological strategies applied to the decontamination of soils polluted with heavy metals. Biotechnol Adv 28:61–69

    Article  CAS  PubMed  Google Scholar 

  137. White C, Shaman AK, Gadd GM (1998) An integrated microbial process for the bioremediation of soil contaminated with toxic metals. Nat Biotechnol 16:572–575

    Article  CAS  PubMed  Google Scholar 

  138. Kumar RN, Nagendran R (2009) Fractionation behavior of heavy metals in soil during bioleaching with Acidithiobacillus thiooxidans. J Hazard Mater 169:1119–1126

    Article  CAS  Google Scholar 

  139. McGrath SP, Zhao FJ, Lombi E (2002) Phytoremediation of metals, metalloids, and radionuclides. Adv Agron 75:1–56

    Article  CAS  Google Scholar 

  140. Wu L, Luo Y, Song J (2007) Manipulating soil metal availability using EDTA and low-molecular-weight organic acids. In: Willey N (ed) Methods in biotechnology, vol 23, Phytoremediation: methods and reviews. Humana Press Inc., Totowa, pp 290–303

    Google Scholar 

  141. Jadia CD, Fulekar MH (2009) Phytoremediation of heavy metals: recent techniques. Afr J Biotechnol 8:921–928

    CAS  Google Scholar 

  142. Wu L, Li Z, Han C, Liu L, Teng Y, Sun X et al (2012) Phytoremediation of soil contaminated with cadmium, copper and polychlorinated biphenils. Int J Phytoremediation 14:570–584

    Article  CAS  PubMed  Google Scholar 

  143. Ouyang Y (2002) Phytoremediation: modelling plant uptake and contaminant transport in the soil-plant-atmosphere continuum. J Hydrology 266:66–82

    Article  CAS  Google Scholar 

  144. Schwitzguébel J-P (2002) Hype or hope: the potential of phytoremediation as an emerging green technology. Fed Facil Environ J 13:109–125

    Article  Google Scholar 

  145. Abhilash PC, Pandey VC, Srivastava P, Rakesh PS, Chandran S, Singh N et al (2009) Phytofiltration of cadmium from water by Limnocharis flava (L.) Buchenau grown in free-floating culture system. J Hazard Mater 170:791–797

    Article  CAS  PubMed  Google Scholar 

  146. Newman JM, Clausen JC, Neafsey JA (2000) Seasonal performance of a wetland constructed to process dairy milkhouse wastewater in Connecticut. Ecol Eng 14:181–198

    Article  Google Scholar 

  147. Dunne EJ, Culleto N, O’Donovan G, Harrington R, Olsen AE (2005) An integrated constructed wetland to treat contaminants and nutrients from dairy farmyard dirty water. Ecol Eng 24:221–234

    Article  Google Scholar 

  148. Chavan PV, Dennett KE, Marchand EA, Gustin MS (2007) Evaluation of small-scale constructed wetland for water quality and Hg transformation. J Hazard Mater 149:543–547

    Article  CAS  PubMed  Google Scholar 

  149. Zurita F, De Anda J, Belmont MA (2009) Treatment of domestic wastewater and production of commercial flowers in vertical and horizontal subsurface-flow constructed wetlands. Ecol Eng 35:861–869

    Article  Google Scholar 

  150. Liu Y-J, Mu Y-J, Zhu Y-G, Ding H, Arens NC (2007) Which ornamental plant species effectively remove benzene from indoor air? Atmos Environ 41:650–654

    Article  CAS  Google Scholar 

  151. Maegher R (2000) Phytoremediation of toxic elemental and organic pollutants. Curr Opin Plant Biol 3:153–162

    Article  Google Scholar 

  152. Willscher S, Mirgorodsky D, Jablonski L, Ollivier D, Merten D, Büchel G et al (2013) Field scale phytoremediation experiments on a heavy metal and uranium contaminated site, and further utilization of the plant residues. Hydrometallurgy 131–132:46–53

    Article  CAS  Google Scholar 

  153. Clemens S (2001) Developing tools for phytoremediation: towards a molecular understanding of plant metal tolerance and accumulation. Int J Occup Med Environ Health 14:235–239

    CAS  PubMed  Google Scholar 

  154. Kawahigashi H (2009) Transgenic plants for phytoremediation of herbicides. Curr Opin Biotechnol 20:225–230

    Article  CAS  PubMed  Google Scholar 

  155. Willscher S, Wittig J, Bergmann H, Büchel G, Merten D, Werner P (2009) Phytoremediation as an alternative way for the treatment of large, low heavy metal contaminated sites: application at a former uranium mining area. Adv Mater Res 71–73:705–708

    Article  Google Scholar 

  156. Saier MH, Trevors JT (2010) Phytoremediation. Water Air Soil Pollut 205:61–63

    Article  CAS  Google Scholar 

  157. Kalve S, Sarangi BK, Pandey RA, Chakrabarti T (2011) Arsenic and chromium hyperaccumulation by an ecotype of Pteris vittata—prospective for phytoextraction from contaminated water and soil. Curr Sci 100:888–894

    CAS  Google Scholar 

  158. Sarma H (2011) Metal hyperaccumulation in plants: a review focusing on phytoremediation technology. J Environ Sci Technol 4:118–138

    Article  CAS  Google Scholar 

  159. Singh A, Prasad SM (2011) Reduction of heavy metal load in food chain: technology assessment. Rev Environ Sci Biotechnol 10:199–214

    Article  CAS  Google Scholar 

  160. Vithanage M, Dabrowska BB, Mukherjee B, Sandhi A, Bhattacharya P (2012) Arsenic uptake by plants and possible phytoremediation applications: a brief overview. Environ Chem Lett 10:217–224

    Article  CAS  Google Scholar 

  161. Navari-Izzo F, Quartacci MF (2001) Phytoremediation of metals: tolerance mechanisms against oxidative stress. Minerva Biotechnol 13:23–83

    Google Scholar 

  162. McGrath SP, Zhao FJ (2003) Phytoextraction of metals and metalloids from contaminated soils. Curr Opin Biotechnol 14:277–282

    Article  CAS  PubMed  Google Scholar 

  163. Pilon-Smits E (2005) Phytoremediation. Annu Rev Plant Biol 56:15–39

    Article  CAS  PubMed  Google Scholar 

  164. Kidd P, Barceló J, Bernal MP, Navari-Izzo F, Poschenrieder C, Shileve S et al (2009) Trace element behaviour at the root–soil interface: implications in phytoremediation. Environ Exp Bot 67:243–259

    Article  CAS  Google Scholar 

  165. Schwitzguébel J-P, Kumpiene J, Comino E, Vanek T (2009) From green to clean: a promising approach towards environmental remediation and human health for the 21st century. Agrochimica 4(LIII-N):209–237

    Google Scholar 

  166. Ullah A, Heng S, Farooq M, Munis H, Fahad S, Yang X (2015) Phytoremediation of heavy metals assisted by plant growth promoting (PGP) bacteria: a review. Environ Exp Bot 117:28–40

    Article  CAS  Google Scholar 

  167. Marques APGC, Rangel AOSS, Castro PML (2009) Remediation of heavy metal contaminated soils: phytoremediation as a potentially promising clean-up technology. Crit Rev Environ Sci Technol 39:622–654

    Article  CAS  Google Scholar 

  168. Jing Y, He Z, Yang X (2007) Role of soil rhizobacteria in phytoremediation of heavy metal contaminated soils. J Zhejiang Univ Sci 8:192–207

    Article  CAS  Google Scholar 

  169. Glick BR (2010) Using soil bacteria to facilitate phytoremediation. Biotechnol Adv 28:367–374

    Article  CAS  PubMed  Google Scholar 

  170. Gamalero E, Trotta A, Massa N, Copetta A, Martinotti MG, Berta G (2004) Impact of two fluorescent pseudomonads and an arbuscular mycorrhizal fungus on tomato plant growth root architecture, and P acquisition. Mycorrhiza 14:185–192

    Article  PubMed  Google Scholar 

  171. Glick BR (2004) Bacterial ACC, deaminase and the alleviation of plant stress. Adv Appl Microbiol 56:291–312

    Article  CAS  PubMed  Google Scholar 

  172. Hadi F, Bano A (2010) Effect of diazotrophs (Rhizobium and Azobactor) on growth of maize (Zea mays L.) and accumulation of lead (Pb) in different plant parts. Pak J Bot 42:4363–4370

    Google Scholar 

  173. Tangahu BV, Abdullah SRS, Basri H, Idris M, Anuar N, Mukhlisin M (2011) Review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. Int J Chem Eng 2011:1–31

    Article  Google Scholar 

  174. Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica 2012:15 pages

    Google Scholar 

  175. Dardanelli MS, Manyani H, González-Barroso S, Rodríguez-Carvajal MA, Gil-Serrano AM, Espuny MR et al (2010) Effect of the presence of the plant growth promoting rhizobacterium (PGPR) Chryseobacterium balustinum Aur9 and salt stress in the pattern of flavonoids exuded by soybean roots. Plant Soil 328:483–493

    Article  CAS  Google Scholar 

  176. Nadeem SM, Zahir ZA, Naveed M, Asghar HN, Arshad M (2010) Rhizobacteria capable of producing ACC-deaminase may mitigate salt stress in wheat. Soil Sci Soc Am J 74:533–542

    Article  CAS  Google Scholar 

  177. Kamnev AA, Lelie VD (2000) Chemical and biological parameters as tools to evaluate and improve heavy metal phytoremediation. Biosci Rep 20:239–258

    Article  CAS  PubMed  Google Scholar 

  178. Ma Y, Rajkumar M, Luo Y, Freitas H (2011) Inoculation of endophytic bacteria on host and non-host plants-effects on plant growth and Ni uptake. J Hazard Mater 195:230–237

    Article  CAS  PubMed  Google Scholar 

  179. Yan-de J, Zhen-li H, Xiao-e Y (2007) Role of soil rhizobacteria in phytoremediation of heavy metal contaminated soils. J Zhejiang Univ Sci B 8:192–207

    Google Scholar 

  180. Gadd GM (2004) Microbial influence on metal mobility and application for bioremediation. Geoderma 122:109–119

    Article  CAS  Google Scholar 

  181. Gadd GM (2005) Microorganisms in toxic metal polluted soils. In: Buscot F, Varma A (eds) Microorganisms in soils: roles in genesis and functions. Springer, Berlin, pp 325–356

    Google Scholar 

  182. Gadd GM (2010) Metals: minerals and microbes: geomicrobiology and bioremediation. Microbiology 156:609–643

    Article  CAS  PubMed  Google Scholar 

  183. Rajkumar M, Ae N, Freitas H (2009) Endophytic bacteria and their potential to enhance heavy metal phytoextraction. Chemosphere 77:153–160

    Article  CAS  PubMed  Google Scholar 

  184. O’Sullivan DJ, O’Gara F (1992) Traits of fluorescent Pseudomonas spp. Involved in suppression of plant root pathogens. Microbiol Rev 56:662–676

    PubMed  PubMed Central  Google Scholar 

  185. Höflich G, Wiehe W, Kuhn G (1994) Plant growth stimulation by inoculation with symbiotic and association rhizosphere microorganisms. Experientia 50:897–905

    Article  Google Scholar 

  186. Carlot M, Giacomini A, Casella S (2002) Aspects of plante-microbe interactions in heavy metal polluted soil. Acta Biotechnol 22:13–20

    Article  CAS  Google Scholar 

  187. Glick BR (2003) Phytoremediation: synergistic use of plants and bacteria to clean up the environment. Biotechnol Adv 21:383–393

    Article  CAS  PubMed  Google Scholar 

  188. Lebeau T, Braud A, Jézéquel K (2008) Performance of bioaugmentation-assisted phytoextraction applied to metal contaminated soils: a review. Environ Pollut 153:497–522

    Article  CAS  PubMed  Google Scholar 

  189. Duss F, Mozafar A, Oertli JJ, Jäggi W (1986) Effect of bacteria on the iron uptake of axenically-cultured roots of Fe-efficient and Fe-inefficient tomatoes (Lycopersicon esculentum Mill.). J Plant Nutr 9:587–598

    Article  Google Scholar 

  190. Duijff BJ, Kogel WJ, Bakker PAHM, Schippers B (1994) Influence of pseudobactin-358 on the iron nutrition of barley. Soil Biol Biochem 26:1681–1688

    Article  CAS  Google Scholar 

  191. Sharma A, Johri BN (2003) Combat of iron-deprivation through a plant growth promoting fluorescent Pseudomonas strain GRP3A in mung bean (Vigna radiata L. Wilzeck). Microbiol Res 158(1):77–81

    Article  CAS  PubMed  Google Scholar 

  192. Sharma A, Johri BN (2003) Growth promoting influence of siderophore-producing Pseudomonas strains GRP3A and PRS9 in maize (Zea mays L.) under iron limiting conditions. Microbiol Res 158(3):243–248

    Article  CAS  PubMed  Google Scholar 

  193. Jurkevitch E, Chen Y, Hadar Y (1988) Involvement of bacterial siderophores in the remedy of lime-induced chlorosis in peanut. Soil Sci Soc Am J 52:1032–1037

    Article  CAS  Google Scholar 

  194. Abou-Shanab R, Angle J, Chaney R (2006) Bacterial inoculants affecting nickel uptake by Alyssum murale from low, moderate and high Ni soils. Soil Biol Biochem 38:2882–2889.

    Google Scholar 

  195. Whiting SN, Souza MP, Terry N (2001) Rhizosphere bacteria mobilize Zn for hyperaccumulation by Thlaspi caerulescens. Environ Sci Technol 35:3144–3150

    Article  CAS  PubMed  Google Scholar 

  196. Braud A, Jezequel K, Vieille E, Tritter A, Lebeau T (2006) Changes in extractability of Cr and Pb in a polycontaminated soil after bioaugmentation with microbial producers of biosurfactants, organic acids and siderophores. Water Air Soil Pollut Focus 6:261–279

    Article  CAS  Google Scholar 

  197. Duponnois R, Kisa M, Assigbetse K, Prin Y, Thioulouse J, Issartel M et al (2006) Fluorescent pseudomonads occurring in Macrotermes subhyalinus mound structures decrease Cd toxicity and improve its accumulation in sorghum plants. Sci Total Environ 370:391–400

    Article  CAS  PubMed  Google Scholar 

  198. Wu CH, Wood TK, Mulchandani A, Chen W (2006) Engineering plante microbe symbiosis for rhizoremediation of heavy metals. Appl Environ Microbiol 72:1129–1134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Wu SC, Cheung KC, Luo YM, Wong MH (2006) Effects of inoculation of plant growth-promoting rhizobacteria on metal uptake by Brassica juncea. Environ Pollut 140:124–135

    Article  CAS  PubMed  Google Scholar 

  200. Dubbin WE, Ander EL (2003) Influence of microbial hydroxamate siderophores on Pb(II) desorption from a-FeOOH. Appl Geochem 18:1751–1756

    Article  CAS  Google Scholar 

  201. Neubauer U, Nowack B, Furrer G, Schulin R (2000) Heavy metal sorption on clay minerals affected by the siderophore desferrioxamine B. Environ Sci Technol 34:2749–2755

    Article  CAS  Google Scholar 

  202. Sekara A, Poniedzialeek M, Ciura J, Jedrszczyk E (2005) Cadmium and lead accumulation and distribution in the organs of nine crops: implications for phytoremediation. Pol J Environ Stud 14:509–516

    CAS  Google Scholar 

  203. Rafati M, Khorasani N, Moattar F, Shirvany A, Moraghebi F, Hosseinzadeh S (2011) Phytoremediation potential of Populus alba and Morus alba for cadmium, chromuim and nickel absorption from polluted soil. Int J Environ Res 5:961–970

    CAS  Google Scholar 

  204. Zacchini M, Pietrini F, Mugnozza GS, Iori V, Pietrosanti L, Massacci A (2009) Metal tolerance, accumulation and translocation in poplar and willow clones treated with cadmium in hydroponics. Water Air Soil Pollut 197:23–34

    Article  CAS  Google Scholar 

  205. Cherian S, Oliveira MM (2005) Transgenic plants in phytoremediation: recent advances and new possibilities. Environ Sci Technol 39:9377–9390

    Article  CAS  PubMed  Google Scholar 

  206. Milic D, Lukovic J, Ninkov J, Zeremski-Skoric T, Zoric L, Vasin J et al (2012) Heavy metal content in halophytic plants from inland and maritime saline areas. Cent Eur J Biol 7:307–317

    CAS  Google Scholar 

  207. Robinson BH, Leblanc M, Petit D, Brooks RR, Kirkman JH, Gregg PEH (1998) The potential of Thlaspi caerulescens for phytoremediation of contaminated soils. Plant Soil 203:47–56

    Article  CAS  Google Scholar 

  208. Tlustoš P, Szakova J, Hrubỳ J, Hartman I, Najmanova J, Nedělnik J et al (2006) Removal of As, Cd, Pb, and Zn from contaminated soil by high biomass producing plants. Plant Soil Environ 52:413–423

    Google Scholar 

  209. Raskin I, Kumar PBAN, Dushenkov S, Salt DE (1994) Bioconcentration of heavy metals by plants. Curr Opin Biotechnol 5:285–290

    Article  CAS  Google Scholar 

  210. Brooks RR (ed) (1998) Plants that hyperaccumulate heavy metals. CAB International, Wallingford

    Google Scholar 

  211. Baker AJM, Brooks RR (1989) Terrestrial higher plants which hyperaccumulate metallic elements—a review of their distribution, ecology and phytochemistry. Biorecovery 1:81–126

    CAS  Google Scholar 

  212. Yang XE, Long XX, Ye HB, He ZL, Calvert DV, Stoffella PJ (2004) Cadmium tolerance and hyperaccumulation in a new Zn hyperaccumulating plant species (Sedum alfredii Hance). Plant Soil 259:181–189

    Article  CAS  Google Scholar 

  213. Yanqun Z, Yuan L, Jianjun C, Haiyan C, Li Q, Schvartz C (2005) Hyperaccumulation of Pb, Zn and Cd in herbaceous grown on lead–zinc mining area in Yunnan, China. Environ Int 31:755–762

    Article  PubMed  CAS  Google Scholar 

  214. Sun Q, Ye ZH, Wang XR, Wong MH (2007) Cadmium hyperaccumulation leads to an increase of glutathione rather than phytochelatins in the cadmium hyperaccumulator Sedum alfredii. J Plant Physiol 164:1489–1498

    Article  CAS  PubMed  Google Scholar 

  215. Sun R, Zhou Q, Jin C (2006) Cadmium accumulation in relation to organic acids in leaves of Solanum nigrum L. as a newly found cadmium hyperaccumulator. Plant Soil 285:125–134

    Article  CAS  Google Scholar 

  216. Reeves RD, Baker AJM (2000) Metal-accumulating plants. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New York, pp 193–229

    Google Scholar 

  217. Karimi N, Ghaderian SM, Raab A, Feldmann J, Meharg AA (2009) An arsenic accumulating, hypertolerant brassica, Isatis cappadocica. New Phytol 184:41–47

    Article  CAS  PubMed  Google Scholar 

  218. Karimi N, Ghaderian SM, Maroofi H, Schat H (2010) Analysis of arsenic in soil and vegetation of a contaminated area in Zarshuran, Iran. Int J Phytoremediation 12:159–173

    Article  CAS  PubMed  Google Scholar 

  219. Ma LQ, Komar KM, Tu C, Zhang WH, Cai Y, Kennelley ED (2001) A fern that hyperaccumulates arsenic: a hardy, versatile, fast-growing plant helps to remove arsenic from contaminated soils. Nature 409:579

    Article  CAS  PubMed  Google Scholar 

  220. Zhang W, Cai Y, Downum KR, Ma LQ (2004) Thiol synthesis and arsenic hyperaccumulation in Pteris vittata (Chinese brake fern). Environ Pollut 131:337–345

    Article  CAS  PubMed  Google Scholar 

  221. Wang HB, Wong MH, Lan CY, Baker AJ, Qin YR, Shu WS et al (2007) Uptake and accumulation of arsenic by 11 Pteris taxa from southern China. Environ Pollut 145:225–233

    Article  CAS  PubMed  Google Scholar 

  222. Milner MJ, Kochian LV (2008) Investigating heavy-metal hyperaccumulation using Thlaspi caerulescens as a model system. Ann Bot 102:3–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Krämer U (2010) Metal hyperaccumulation in plants. Annu Rev Plant Biol 61:517–534

    Article  PubMed  CAS  Google Scholar 

  224. Prasad MNV, Freitas H (2003) Metal hyperaccumulation in plants e biodiversity prospecting for phytoremediation technology. Electron J Biotechnol 6:275–321

    Article  Google Scholar 

  225. Seth CS (2012) A review on mechanisms of plant tolerance and role of transgenic plants in environmental clean-up. Bot Rev 78:32–62

    Article  Google Scholar 

  226. Meers E, Vandecasteele B, Ruttens A, Vangronsveld J, Tack FMG (2007) Potential of five willow species (Salix spp.) for phytoextraction of heavy metals. Environ Exp Bot 60:57–68

    Article  CAS  Google Scholar 

  227. Brunner I, Luster J, Günthardt-Goerg MS, Frey B (2008) Heavy metal accumulation and phytostabilisation potential of tree fine roots in a contaminated soil. Environ Pollut 152:559–568

    Article  CAS  PubMed  Google Scholar 

  228. Domínguez MT, Marañón T, Murillo JM, Schulin R, Robinson BH (2008) Trace element accumulation in woody plants of the Guadiamar Valley, SW Spain: a large-scale phytomanagement case study. Environ Pollut 152:50–59

    Article  PubMed  CAS  Google Scholar 

  229. Mench M, Lepp N, Bert V, Schwitzguébel JP, Gawronski SW, Schröder P et al (2010) Successes and limitations of phytotechnologies at field scale: outcome, assessment and outlook from COST Action 859. J Soil Sediments 10:1039–1070

    Article  CAS  Google Scholar 

  230. Olguín EJ, Sánchez-Galván G (2010) Aquatic phytoremediation: novel insights in tropical and subtropical regions. Pure Appl Chem 82:27–38

    Article  CAS  Google Scholar 

  231. Bolan NS, Park JH, Robinson B, Naidu R, Huh KY (2011) Chapter four—phytostabilization: a green approach to contaminant containment. Adv Agron 112:145–204

    Article  CAS  Google Scholar 

  232. Berti WR, Cunningham SD (2000) Phytos tabilizat ion of metals: phytoremediation of toxic metals using plants to clean up the environment. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New York, pp 71–88

    Google Scholar 

  233. Hooda V (2007) Phytoremediation of toxic metals from soil and waste water. J Environ Biol 28(2):367–376

    CAS  PubMed  Google Scholar 

  234. Barcelo J, Poschenrieder C (2003) Phytoremediation: principles and perspectives. Contrib Sci 2:333–344

    Google Scholar 

  235. Ghosh M, Singh SP (2005) A review on phytoremediation of heavy metals and utilization of it’s by products. Appl Ecol Environ Res 3:1–18

    Article  Google Scholar 

  236. Etim EE (2012) Phytoremediation and its mechanisms: a review. I\nt J Environ Bioenergy 2(3):120–136

    Google Scholar 

  237. USEPA (2000) Introduction to phytoremediation. EPA 600/R-99/107, U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati

    Google Scholar 

  238. Wong MH (2003) Ecological restoration of mine degraded soils, with emphasis on metal contaminated. Chemosphere 50:775–780

    Article  CAS  PubMed  Google Scholar 

  239. Marchiol L, Fellet G, Pošćić F, Zerbi G (2011) A decade of research on phytoremediation in north-east Italy: lessons learned and future directions. In: Golubev A (ed) Handbook of phytoremediation. Nova Science, Hauppauge, pp 137–184

    Google Scholar 

  240. Dickinson NM, Baker AJM, Doronila A, Laidlaw S, Reeves RD (2009) Phytoremediation of inorganics: realism and synergies. Int J Phytoremediation 11:97–114

    Article  CAS  Google Scholar 

  241. Santibáñez C, Verdugo C, Ginocchio R (2008) Phytostabilization of copper mine tailings with biosolids: implications for metal uptake and productivity of Lolium perenne. Sci Tot Environ 395:1–10

    Article  CAS  Google Scholar 

  242. Van Nevel L, Mertens J, Staelens J, De Schrijver A, Tack FMG, De Neve S et al (2011) Elevated Cd and Zn uptake by aspen limits the phytostabilization potential compared to five other tree species. Ecol Eng 37:1072–1080

    Article  Google Scholar 

  243. Mertens J, Vervaeke P, De Schrijver A, Luyssaert S (2004) Metal uptake by young trees from dredged brackish sediment: limitations and possibilities for phytoextraction and phytostabilisation. Sci Total Environ 326:209–215

    Article  CAS  PubMed  Google Scholar 

  244. Raskin I, Robert D, Smith RD, Salt DE (1997) Phytoremediation of metals: using plants to remove pollutants from the environment. Curr Opin Biotechnol 8:221–226

    Article  CAS  PubMed  Google Scholar 

  245. Yao Z, Li J, Xie H, Yu C (2012) Review on remediation technologies of soil contaminated by heavy metals. The 7th international conference on waste management and technology. Procedia Environ Sci 16:722–729

    Article  CAS  Google Scholar 

  246. Liu Y-J, Liu Q-J, Ding H (2011) Reviews on soil pollution, risks, sources and phytoremediation involving metal contaminants. In: Golubev I (ed) Handbook of phytoremediation. Nova Science, New York

    Google Scholar 

  247. Brunetti G, Soler-Rovira P, Farrag K, Senesi N (2009) Tolerance and accumulation of heavy metals by wild plant species grown in contaminated soils in Apulia region, Southern Italy. Plant Soil 318:285–298

    Article  CAS  Google Scholar 

  248. Nedjimi B, Daoud Y (2009) Cadmium accumulation in Atriplex halimus subsp. schweinfurthii and its influence on growth, proline, root hydraulic conductivity and nutrient uptake. Flora 204:316–324

    Article  Google Scholar 

  249. Yadav SK, Juwarkar AA, Kumar GP et al (2009) Bioaccumulation and phyto-translocation of arsenic, chromium and zinc by Jatropha curcas L.: impact of dairy sludge and biofertilizer. Bioresour Technol 100:4616–4622

    Article  CAS  PubMed  Google Scholar 

  250. Mehta P (2005) Evaluating the potential of alder-Frankia symbionts for the remediation and revegetation of oil sands tailings. Masters Abstracts International, vol 45, p 99

    Google Scholar 

  251. Zou T, Li T, Zhang X, Yu H, Luo H (2011) Lead accumulation and tolerance characteristics of Athyrium wardii (Hook.) as a potential phytostabilizer. J Hazard Mater 186:683–689

    Article  CAS  PubMed  Google Scholar 

  252. Nabais C, Gonçalves SC, Freitas H (2007) Phytoremediation in Portugal: present and future. In: Willey N (ed) Phytoremediation. Methods and reviews. Methods in biotechnology. Humana Press Inc., Totowa, pp 405–422

    Google Scholar 

  253. Wang J, Feng X, Anderson CWN, Xing Y, Shang L (2012) Remediation of mercury contaminated sites—a review. J Hazard Mater 221–222:1–18

    Google Scholar 

  254. Dastoor AP, Larocque Y (2004) Global circulation of atmospheric mercury: a modelling study. Atmos Environ 38:147–161

    Article  CAS  Google Scholar 

  255. Selin NE (2009) Global biogeochemical cycling of mercury: a review. Annu Rev Environ Resour 34:43–63

    Article  Google Scholar 

  256. Zayed A, Pilon-Smits E, Souza M, Lin ZQ, Terry N (2000) Remediation of selenium-polluted soils and waters by phytovolatilization. In: Terry N, Bañuelos G (eds) Phytoremediation of contaminated soil and water. CRC, Boca Raton, pp 61–83

    Google Scholar 

  257. Bañuelos GS, Lin ZQ (2007) Acceleration of selenium volatilization in seleniferous agricultural drainage sediments amended with methionine and casein. Environ Pollut 150:306–312

    Article  PubMed  CAS  Google Scholar 

  258. Terry N, Bañuelos G (eds) (2000) Phytoremediation of contaminated soil and water. CRC, New York

    Google Scholar 

  259. Rahman IMM, Hossain MM, Begum ZA, Rahman MA, Hasegawa H (2011) Eco-environmental consequences associated with chelant-assisted phytoremediation of metal-contaminated soil. In: Golubev IA (ed) Handbook of phytoremediation. Nova Science, New York, pp 709–722

    Google Scholar 

  260. Volesky B (1999) Biosorption for the next century. Process Metall 9:161–170

    Article  Google Scholar 

  261. Limcharoensuk T, Sooksawat S, Sumarnrote A, Awutpet T, Kruatrachue M, Pokethitiyook P, Auesukaree C (2015) Bioaccumulation and biosorption of Cd2+ and Zn2+ by bacteria isolated from a zinc mine in Thailand. Ecotoxicol Environ Saf 122:322–330

    Article  CAS  PubMed  Google Scholar 

  262. Tobin JM, White C, Gadd GM (1994) Metal accumulation by fungi: applications in environmental biotechnology. J Ind Microbiol 1:126–130

    Article  Google Scholar 

  263. Fomina M, Gadd GM (2014) Biosorption: current perspectives on concept, definition and application. Bioresour Technol 160:3–14

    Article  CAS  PubMed  Google Scholar 

  264. Amirnia S, Ray MB, Margaritis A (2015) Heavy metals removal from aqueous solutions using Saccharomyces cerevisiae in a novel continuous bioreactor–biosorption system. Chem Eng J 264:863–872

    Article  CAS  Google Scholar 

  265. Wehrheim B, Wettern M (1994) Biosorption of cadmium, copper and lead by isolated mother cell walls and whole cells of Chlorella fusca. Appl Microbiol Biotechnol 41:725–728

    Article  CAS  Google Scholar 

  266. Davis TA, Volesky B, Vieira RHSF (2000) Sargassum seaweed as biosorbent for heavy metals. Water Res 34:4270–4278

    Article  CAS  Google Scholar 

  267. Christoforidis AK, Orfanidis S, Papageorgiou SK, Lazaridou AN, Favvas EP, Mitropoulos AC (2015) Study of Cu(II) removal by Cystoseira crinitophylla biomass in batch and continuous flow biosorption. Chem Eng J 277:334–340

    Article  CAS  Google Scholar 

  268. Kapoor A, Viraraghavan T, Cullimore DR (1999) Removal of heavy metals using the fungus Aspergillus niger. Bioresour Technol 70:95–104

    Article  CAS  Google Scholar 

  269. Vieira RHSF, Volesky B (2000) Biosorption: a solution to pollution? Int Microbiol 3:17–24

    CAS  PubMed  Google Scholar 

  270. Veglio F, Beolchini F (1997) Removal of metals by biosorption: a review. Hydrometallurgy 44:301–316

    Article  CAS  Google Scholar 

  271. Abdolali A, Guo WS, Ngo HH, Chen SS, Nguyen NC, Tung KL (2014) Typical lignocellulosic wastes and by-products for biosorption process in water and wastewater treatment: a critical review. Bioresour Technol 160:57–66

    Article  CAS  PubMed  Google Scholar 

  272. Vijayaraghavan K, Balasubramanian R (2015) Is biosorption suitable for decontamination of metal-bearing wastewaters? A critical review on the state-of-the-art of biosorption processes and future directions. J Environ Manage 160:283–296

    Article  CAS  PubMed  Google Scholar 

  273. Beveridge T, Murray R (1976) Uptake and retention of metals by cell walls of Bacillus subtilis. J Bacteriol 127:1502–1518

    CAS  PubMed  PubMed Central  Google Scholar 

  274. Vijayaraghavan K, Yun Y-S (2008) Bacterial biosorbents and biosorption. Biotechnol Adv 26:266–291

    Article  CAS  PubMed  Google Scholar 

  275. Kapoor A, Viraraghavan T (1995) Fungal biosorption-an alternative treatment option for heavy metal bearing wastewaters: a review. Bioresour Technol 53:195–206

    CAS  Google Scholar 

  276. Davis TA, Volesky B, Mucci A (2003) A review of the biochemistry of heavy metal biosorption by brown algae. Water Res 37:4311–4330

    Article  CAS  PubMed  Google Scholar 

  277. Crini G (2005) Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment. Prog Polym Sci 30:38–70

    Article  CAS  Google Scholar 

  278. He J, Chen JP (2014) A comprehensive review on biosorption of heavy metals by algal biomass: materials, performances, chemistry, and modelling simulation tools. Bioresour Technol 160:67–78

    Article  CAS  PubMed  Google Scholar 

  279. Kumar SK, Dahmas HU, Won E-J, Lee J-S, Shin K-H (2015) Microalgae—a promising tool for heavy metal remediation. Ecotoxicol Environ Saf 113:329–352

    Article  CAS  Google Scholar 

  280. Cassidy MB, Lee H, Trevors JT (1996) Environmental applications of immobilized microbial cells: a review. J Ind Microbiol 16:79–101

    Article  CAS  Google Scholar 

  281. Schiewer S, Wong MH (2000) Ionic strength effects in biosorption of metals by marine algae. Chemosphere 41:271–282

    Article  CAS  PubMed  Google Scholar 

  282. Wang J, Chen C (2006) Biosorption of heavy metals by Saccharomyces cerevisiae: a review. Biotechnol Adv 24:427–451

    Article  CAS  PubMed  Google Scholar 

  283. Volesky B, Naja G (2007) Biosorption technology: starting up an enterprise. Int J Technol Transf Commer 6:196–211

    Google Scholar 

  284. Lesmana SO, Febriana N, Soetaredjo FE, Sunarso J, Ismadji S (2009) Studies on potential applications of biomass for the separation of heavy metals from water and wastewater. Biochem Eng J 44:19–41

    Article  CAS  Google Scholar 

  285. Kapoor A, Viraraghavan T (1998) Removal of heavy metals from aqueous solutions using immobilized fungal biomass in continuous mode. Water Res 32(6):1968–1977

    Article  CAS  Google Scholar 

  286. Marques P, Pinheiro HM, Rosa MF (2007) Cd(II) removal from aqueous solution by immobilised waste brewery yeast in fixed-bed and airlift reactors. Desalination 214:343–351

    Article  CAS  Google Scholar 

  287. Tsezos M (1990) Engineering aspects of metal binding by biomass. In: Ehrlich HL, Brierley CL (eds) Microbial MINERAL RECOVERY. McGraw-Hill, New York, pp 325–340

    Google Scholar 

  288. Fernandez JM, Plaza C, Hernandez D, Polo A (2007) Carbon mineralization in an and soil amended with thermally-dried and composted sewage sludges. Geoderma 137:497–503

    Article  CAS  Google Scholar 

  289. Alburquerque JA, Gonzalvez J, Tortosa G, Baddi GA, Cegarra J (2009) Evaluation of “alperujo” composting based on organic matter degradation, humification and compost quality. Biodegradation 20:257–270

    Article  CAS  PubMed  Google Scholar 

  290. Gandolfi I, Sicolo M, Franzetti A, Fontanarosa E, Santagostino A, Bestetti G (2010) Influence of compost amendment on microbial community and ecotoxicity of hydrocarbon-contaminated soils. Bioresour Technol 101:568–575

    Article  CAS  PubMed  Google Scholar 

  291. Huang DL, Zeng G, Feng CL, Hu S, Jian XY, Tang L et al (2008) Degradation of lead contaminated lignocellulosic waste by Phanerochaete chrysosporium and the reduction of lead toxicity. Environ Sci Technol 42:4946–4951

    Article  CAS  PubMed  Google Scholar 

  292. Huang DL, Zeng G, Feng CL, Hu S, Lai C, Zhao MH et al (2010) Changes of microbial population structure related to lignin degradation during lignocellulosic waste composting. Bioresour Technol 101:4062–4067

    Article  CAS  PubMed  Google Scholar 

  293. Yu Z, Zeng GM, Chen YN, Zhang JC, Yu Y, Li H et al (2011) Effects of inoculation with Phanerochaete chrysosporium on remediation of pentachlorophenol-contaminated soil waste by composting. Process Biochem 46:1285–1291

    Article  CAS  Google Scholar 

  294. Zeng GM, Yu Z, Chen YN, Zhang JC, Li H, Yu M et al (2011) Response of compost maturity and microbial community composition to pentachlorophenol (PCP)-contaminated soil during composting. Bioresour Technol 102:5905–5911

    Article  CAS  PubMed  Google Scholar 

  295. Chen M, Xu P, Zeng G, Yang C, Huang D, Zhang J (2015) Bioremediation of soils contaminated with polycyclic aromatic hydrocarbons, petroleum, pesticides, chlorophenols and heavy metals by composting: applications, microbes and future research needs. Biotechnol Adv 33:745–755

    Article  CAS  PubMed  Google Scholar 

  296. Pedra F, Polo A, Ribeiro A, Domingues H (2007) Effects of municipal solid waste compost and sewage sludge on mineralization of soil organic matter. Soil Biol Biochem 39:1375–1382

    Article  CAS  Google Scholar 

  297. Kästner M, Mahro B (1996) Microbial degradation of polycyclic aromatic hydrocarbons in soils affected by the organic matrix of compost. Appl Microbiol Biotechnol 44:668–675

    Article  PubMed  Google Scholar 

  298. Lu LH, Zeng GM, Fan CZ, Ren XJ, Wang C, Zhao QR et al (2013) Characterization of a laccase-like multicopper oxidase from newly isolated Streptomyces sp C1 in agricultural waste compost and enzymatic decolorization of azo dyes. Biochem Eng J 72:70–76

    Article  CAS  Google Scholar 

  299. Zeng G, Zhang J, Chen Y, Yu Z, Yu M, Li H et al (2011) Relative contributions of archaea and bacteria to microbial ammonia oxidation differ under different conditions during agricultural waste composting. Bioresour Technol 102:9026–9032

    Article  CAS  PubMed  Google Scholar 

  300. Zhang J, Zeng G, Chen Y, Yu M, Huang H, Fan C et al (2013) Impact of Phanerochaete chrysosporium inoculation on indigenous bacterial communities during agricultural waste composting. Appl Microbiol Biotechnol 97:3159–3169

    Article  CAS  PubMed  Google Scholar 

  301. Samanta SK, Singh OV, Jain RK (2002) Polycyclic aromatic hydrocarbons: environmental pollution and bioremediation. Trends Biotechnol 20:243–248

    Article  CAS  PubMed  Google Scholar 

  302. Watanabe K (2001) Microorganisms relevant to bioremediation. Curr Opin Biotechnol 12:237–241

    Article  CAS  PubMed  Google Scholar 

  303. Puglisi E, Cappa F, Fragoulis G, Trevisan M, Del Re AA (2007) Bioavailability and degradation of phenanthrene in compost amended soils. Chemosphere 67:548–556

    Article  CAS  PubMed  Google Scholar 

  304. van Herwijnen R, Hutchings TR, Al-Tabbaa A, Moffat AJ, Johns ML, Ouki SK (2007) Remediation of metal contaminated soil with mineral-amended composts. Environ Pollut 150:347–354

    Article  PubMed  CAS  Google Scholar 

  305. Farrell M, Jones DL (2010) Use of composts in the remediation of heavy metal contaminated soil. J Hazard Mater 175:575–582

    Article  CAS  PubMed  Google Scholar 

  306. Zhang C, Hughes JB, Nishino SF, Spain JC (2000) Slurry-phase biological treatment of 2,4-dinitrotoluene and 2,6-dinitrotoluene: role of bioaugmentation and effects of high dinitrotoluene concentration. Environ Sci Technol 34:2810–2816

    Article  CAS  Google Scholar 

  307. Harmsen J, Rulkens WH, Sims RC, Rijtema PE, Zweers AJ (2007) Theory and application of landfarming to remediate polycyclic aromatic hydrocarbons and mineral oil contaminated sediments; beneficial reuse. J Environ Qual 36:1112–1122

    Article  CAS  PubMed  Google Scholar 

  308. Maciel BM, Santos ACF, Dias JCT, Vidal RO, Dias RJC, Gross E et al (2009) Simple DNA extraction protocol for a 16S rDNA study of bacterial diversity in tropical landfarm soil used for bioremediation of oil waste. Genet Mol Res 8:375–388

    Article  CAS  PubMed  Google Scholar 

  309. Souza TS, Hencklein FA, Angelis DF, Gonçalves RA, Fontanetti CS (2009) The Allium cepa bioassay to evaluate landfarming soil, before and after the addition of rice hulls to accelerate organic pollutants biodegradation. Ecotoxicol Environ Saf 72:1363–1368

    Article  CAS  PubMed  Google Scholar 

  310. Sanscartier D, Reimer K, Zeeb B, George K (2010) Management of hydrocarbon contaminated soil through bioremediation and landfill disposal at a remote location in Northern Canada. Can J Civil Eng 37:147–155

    Article  CAS  Google Scholar 

  311. Smith E, Thavamani P, Ramadass K, Naidu R, Srivastava P, Megharaj M (2015) Remediation trials for hydrocarbon-contaminated soils in arid environments: evaluation of bioslurry and biopiling techniques. Int Biodeterior Biodegrad 101:56–65

    Article  CAS  Google Scholar 

  312. Adams JA, Reddy KR (2003) Extent of benzene biodegradation in saturated soil column during air sparging. Ground Water Monit Rem 23:85–94

    Article  CAS  Google Scholar 

  313. Wu YW, Huang GH, Chakma A, Zeng GM (2005) Separation of petroleum hydrocarbons from soil and groundwater through enhanced bioremediation. Energy Sources 27:221–232

    Article  CAS  Google Scholar 

  314. Brar SK, Verma M, Surampalli RY, Misra K, Tyagi RD, Meunier N et al (2006) Bioremediation of hazardous wastes—a review. Pract Period Hazard Toxic Radioact Waste Manage 10:59–72

    Article  CAS  Google Scholar 

  315. Kao CM, Chen CY, Chen SC, Chien HY, Chen YL (2008) Application of in situ biosparging to remediate a petroleum-hydrocarbon spill site: field and microbial evaluation. Chemosphere 70:1492–1499

    Article  CAS  PubMed  Google Scholar 

  316. Conte P, Agretto A, Spaccini R, Piccolo A (2005) Soil remediation: humic acids as natural surfactants in the washings of highly contaminated soils. Environ Pollut 135:515–522

    Article  CAS  PubMed  Google Scholar 

  317. Vázquez S, Hevia A, Moreno E, Esteban E, Peñalosa JM, Carpena RO (2011) Natural attenuation of residual heavy metal contamination in soils affected by the Aznalcóllar mine spill, SW Spain. J Environ Manage 92:2069–2075

    Article  PubMed  CAS  Google Scholar 

  318. Lors C, Damidot D, Ponge J-F, Périé F (2012) Comparison of a bioremediation process of PAHs in a PAH-contaminated soil at field and laboratory scales. Environ Pollut 165:11–17

    Article  CAS  PubMed  Google Scholar 

  319. Kedziorek MAM, Etchebers O, Reynal-Preud’homme C, Bourg ACM (2013) Natural attenuation of heavy metals (Cd, Cr, and Pb) in a water table aquifer underlying an industrial site. Procedia Earth Planet Sci 7:89–92

    Article  CAS  Google Scholar 

  320. Das S, Jean J-S, Kar S, Chou M-L, Chen C-Y (2014) Screening of plant growth-promoting traits in arsenic-resistant bacteria isolated from agricultural soil and their potential implication for arsenic bioremediation. J Hazard Mater 272:112–120

    Article  CAS  PubMed  Google Scholar 

  321. Xu Y, Sun G-D, Jin J-H, Liu Y, Luo M, Zhong Z-P, Liu Z-P (2014) Successful bioremediation of an aged and heavily contaminated soil using a microbial/plant combination strategy. J Hazard Mater 264:430–438

    Article  CAS  PubMed  Google Scholar 

  322. Sagarkar S, Nousiainen A, Shaligram S, Björklöf K, Lindström K, Jørgensen KS, Kapley A (2014) Soil mesocosm studies on atrazine bioremediation. J Environ Manage 139:208–216

    Article  CAS  PubMed  Google Scholar 

  323. Freitas ETF, Montoro LA, Gasparon M, Ciminelli VST (2015) Natural attenuation of arsenic in the environment by immobilization in nanostructured hematite. Chemosphere 138:340–347

    Article  CAS  PubMed  Google Scholar 

  324. Dong WH, Zhang P, Lin XY, Zhang Y, Tabouré A (2015) Natural attenuation of 1,2,4-trichlorobenzene in shallow aquifer at the Luhuagang’s landfill site, Kaifeng, China. Sci Total Environ 505:216–222

    Article  CAS  PubMed  Google Scholar 

  325. Martínez-Pascual E, Grotenhuis T, Solanas AM, Viñas M (2015) Coupling chemical oxidation and biostimulation: effects on the natural attenuation capacity and resilience of the native microbial community in alkylbenzene-polluted soil. J Hazard Mater 300:135–143

    Article  PubMed  CAS  Google Scholar 

  326. Stormo KE, Crawford RL (1992) Preparation of encapsulated microbial cells for environmental applications. Appl Environ Microbiol 58:727–730

    CAS  PubMed  PubMed Central  Google Scholar 

  327. Jacques RJS, Okeke BC, Bento FM, Teixeira AS, Peralba MCR, Camargo FAO (2008) Microbial consortium bioaugmentation of a polycyclic aromatic hydrocarbons contaminated soil. Bioresour Technol 99:2637–2643

    Article  CAS  PubMed  Google Scholar 

  328. Lima D, Viana P, André S, Chelinho S, Costa C, Ribeiro R et al (2009) Evaluating a bioremediation tool for atrazine contaminated soils in open soil microcosms: the effectiveness of bioaugmentation and biostimulation approaches. Chemosphere 74:187–192

    Article  CAS  PubMed  Google Scholar 

  329. Alisi C, Musella R, Tasso F, Ubaldi C, Manzo S, Cremisini C, Sprocati AR (2009) Bioremediation of diesel oil in a co-contaminated soil by bioaugmentation with a microbial formula tailored with native strains selected for heavy metals resistance. Sci Total Environ 407:3024–3032

    Article  CAS  PubMed  Google Scholar 

  330. Sprocati AR, Alisi C, Tasso F, Marconi P, Sciullo A, Pinto V et al (2012) Effectiveness of a microbial formula, as a bioaugmentation agent, tailored for bioremediation of diesel oil and heavy metal co-contaminated soil. Process Biochem 47:1649–1655

    Article  CAS  Google Scholar 

  331. Polti MA, Aparicio JD, Benimeli CS, Amoroso MJ (2014) Simultaneous bioremediation of Cr(VI) and lindane in soil by Actinobacteria. Int Biodeterior Biodegrad 88:48–55

    Article  CAS  Google Scholar 

  332. Winquist E, Björklöf K, Schultz E, Räsänen M, Salonen K, Anasonye F et al (2014) Bioremediation of PAH-contaminated soil with fungi—from laboratory to field scale. Int Biodeterior Biodegrad 86:238–247

    Article  CAS  Google Scholar 

  333. García-Delgado C, Yunta F, Eymar E (2015) Bioremediation of multi-polluted soil by spent mushroom (Agaricus bisporus) substrate: polycyclic aromatic hydrocarbons degradation and Pb availability. J Hazard Mater 300:281–288

    Article  PubMed  CAS  Google Scholar 

  334. Wang Y, Peng B, Yang Z, Chai L, Liao Q, Zhang Z, Li C (2015) Bacterial community dynamics during bioremediation of Cr(VI)-contaminated soil. Appl Soil Ecol 85:50–55

    Article  Google Scholar 

  335. Anasonye F, Winquist E, Räsänen M, Kontro J, Björklöf K, Vasilyeva G et al (2015) Bioremediation of TNT contaminated soil with fungi under laboratory and pilot scale conditions. Int Biodeterior Biodegrad 105:7–12

    Article  CAS  Google Scholar 

  336. Ramírez EM, Camacho JV, Rodrigo MA, Cañizares P (2015) Combination of bioremediation and electrokinetics for the in-situ treatment of diesel polluted soil: a comparison of strategies. Sci Total Environ 533:307–316

    Article  CAS  Google Scholar 

  337. Mesa J, Rodríguez-Llorentea ID, Pajueloa E, Piedras JMB, Caviedes MA, Redondo-Gómez S, Mateos-Naranjo E (2015) Moving closer towards restoration of contaminated estuaries: bioaugmentation with autochthonous rhizobacteria improves metal rhizoaccumulation in native Spartina marítima. J Hazard Mater 300:263–271

    Article  CAS  PubMed  Google Scholar 

  338. Margesin R, Schinner F (1998) Low-temperature bioremediation of a waste water contaminated with anionic surfactants and fuel oil. Appl Microbiol Biotechnol 49:482–486

    Article  CAS  PubMed  Google Scholar 

  339. Dias RL, Ruberto L, Hernández E, Vázquez SC, Lo Balbo A, Del Panno MT, Mac Cormack WT (2012) Bioremediation of an aged diesel oil-contaminated Antarctic soil: evaluation of the “on site” biostimulation strategy using different nutrient sources. Int Biodeterior Biodegrad 75:96–103

    Article  CAS  Google Scholar 

  340. Mishra D, Kim D-J, Ralph DE, Ahn J-G, Rhee Y-A (2008) Bioleaching of metals from spent lithium ion secondary batteries using Acidithiobacillus ferrooxidans. Waste Manag 28:333–338

    Article  CAS  PubMed  Google Scholar 

  341. Ren W-X, Li P-J, Geng Y, Li X-J (2009) Biological leaching of heavy metals from a contaminated soil by Aspergillus niger. J Hazard Mater 167:164–169

    Article  CAS  PubMed  Google Scholar 

  342. Akinci G, Guven DE (2011) Bioleaching of heavy metals contaminated sediment by pure and mixed cultures of Acidithiobacillus spp. Desalination 268:221–226

    Article  CAS  Google Scholar 

  343. Fang D, Zhang R, Zhou L, Li J (2011) A combination of bioleaching and bioprecipitation for deep removal of contaminating metals from dredged sediment. J Hazard Mater 192:226–233

    CAS  PubMed  Google Scholar 

  344. Deng X, Chai L, Yang Z, Tang C, Tong H, Yuan P (2012) Bioleaching of heavy metals from a contaminated soil using indigenous Penicillium chrysogenum strain F1. J Hazard Mater 233–234:25–32

    Article  PubMed  CAS  Google Scholar 

  345. Deng X, Chai L, Yang Z, Tang C, Wang Y, Shia Y (2013) Bioleaching mechanism of heavy metals in the mixture of contaminated soil and slag by using indigenous Penicillium chrysogenum strain F1. J Hazard Mater 248–249:107–114

    Article  PubMed  CAS  Google Scholar 

  346. Guven DE, Akinci G (2013) Effect of sediment size on bioleaching of heavy metals from contaminated sediments of Izmir Inner Bay. J Environ Sci 25:1784–1794

    Article  CAS  Google Scholar 

  347. Li S, Zhong H, Hu Y, Zhao J, He Z, Gu G (2014) Bioleaching of a low-grade nickel–copper sulfide by mixture of four thermophiles. Bioresour Technol 153:300–306

    Article  CAS  PubMed  Google Scholar 

  348. Groudev S, Georgiev P, Spasova I, Nicolova M (2014) Decreasing the contamination and toxicity of a heavily contaminated soil by in situ bioremediation. J Geochem Explor 144:374–379

    Article  CAS  Google Scholar 

  349. Park J, Han Y, Lee E, Choi U, Yoo K, Song Y, Kim H (2014) Bioleaching of highly concentrated arsenic mine tailings by Acidithiobacillus ferrooxidans. Sep Purif Technol 133:291–296

    Article  CAS  Google Scholar 

  350. Yang H, Feng S, Xin Y, Wang W (2014) Community dynamics of attached and free cells and the effects of attached cells on chalcopyrite bioleaching by Acidithiobacillus sp. Bioresour Technol 154:185–191

    Article  CAS  PubMed  Google Scholar 

  351. Zhu J-Y, Zhang J-X, Li Q, Han T, Hu Y-H, Liu X-D et al (2014) Bioleaching of heavy metals from contaminated alkaline sediment by auto- and heterotrophic bacteria in stirred tank reactor. Trans Nonferrous Metals Soc China 24:2969–2975

    Article  CAS  Google Scholar 

  352. Bajestani MI, Mousavi SM, Shojaosadati SA (2014) Bioleaching of heavy metals from spent household batteries using Acidithiobacillus ferrooxidans: statistical evaluation and optimization. Sep Purif Technol 132:309–316

    Article  CAS  Google Scholar 

  353. Shahrabi-Farahani M, Yaghmaei S, Mousavi SM, Amiri F (2014) Bioleaching of heavy metals from a petroleum spent catalyst using Acidithiobacillus thiooxidans in a slurry bubble column bioreactor. Sep Purif Technol 32:41–49

    Article  CAS  Google Scholar 

  354. Nguyen VK, Lee MH, Park HJ, Lee J-U (2015) Bioleaching of arsenic and heavy metals from mine tailings by pure and mixed cultures of Acidithiobacillus spp. J Ind Eng Chem 21:451–458

    Article  CAS  Google Scholar 

  355. Yang Z, Zhanga Z, Chaia L, Wang Y, Liu Y, Xiao R (2016) Bioleaching remediation of heavy metal-contaminated soils using Burkholderia sp. Z-90. J Hazard Mater 301:145–152

    Google Scholar 

  356. Dary M, Chamber-Pérez MA, Palomares AJ, Pajuelo E (2010) In situ phytostabilisation of heavy metal polluted soils using Lupinus luteus inoculated with metal resistant plant-growth promoting rhizobacteria. J Hazard Mater 177:323–330

    Article  CAS  PubMed  Google Scholar 

  357. Dmuchowskia W, Gozdowski D, Brągoszewsk P, Baczewska AH, Suwara I (2014) Phytoremediation of zinc contaminated soils using silver birch (Betula pendula Roth). Ecol Eng 71:32–35

    Article  Google Scholar 

  358. Agnello AC, Bagard M, van Hullebuscha ED, Esposito G, Huguenota D (2015) Comparative bioremediation of heavy metals and petroleum hydrocarbons co-contaminated soil by natural attenuation, phytoremediation, bioaugmentation and bioaugmentation-assisted phytoremediation. Sci Total Environ. doi:10.1016/j.scitotenv.2015.10.061

    Google Scholar 

  359. Khaokaew S, Landrot G (2015) A field-scale study of cadmium phytoremediation in a contaminated agricultural soil. Chemosphere 138:883–887

    Article  CAS  PubMed  Google Scholar 

  360. Ma Y, Oliveira RS, Nai F, Rajkumar M, Luo Y, Rocha I et al (2015) The hyperaccumulator Sedum plumbizincicola harbors metal-resistant endophytic bacteria that improve its phytoextraction capacity in multi-metal contaminated soil. J Environ Manage 156:62–69

    Article  CAS  PubMed  Google Scholar 

  361. Ma C, Ming H, Lin C, Naidu R, Bolan B (2016) Phytoextraction of heavy metal from tailing waste using Napier grass. CATENA 136:74–83. Bech J, editor. Section 1: Special issue on Reclamation of mining site soils, Part I. and Lei, TW, Yu XX, Zhuang J, editors. Section 2: Special Issue on Understanding hydrological and erosion processes under changing environment

    Article  CAS  Google Scholar 

  362. Grumiaux F, Demuynck S, Pernin C, Leprêtre A (2015) Earthworm populations of highly metal-contaminated soils restored by fly ash-aided phytostabilisation. Ecotoxicol Environ Saf 113:183–190

    Article  CAS  PubMed  Google Scholar 

  363. Taylor RT, Duba AG, Durham WB, Hanna ML, Jackson KJ, Jovanovich MC et al (1992) In situ bioremediation of trichloroethylene-contaminated water by a resting-cell methanotrophic microbial filter. In: Conference of the international in situ bioremediation; Ontario, pp 20–24

    Google Scholar 

  364. Duran N, Marcato PD, De Souza GIH, Alves OL, Esposito E (2007) Antibacterial effect of silver nanoparticles produced by fungal process on textile fabrics and their effluent treatment. J Biomed Nanotechnol 3:203–208

    Article  CAS  Google Scholar 

  365. Loutseti S, Danielidis DB, Economou-Amilli A, Katsaros C, Santas R, Santas P (2009) The application of a micro-algal/bacterial biofilter for the detoxification of copper and cadmium metal wastes. Bioresour Technol 100:2099–2105

    Article  CAS  PubMed  Google Scholar 

  366. Li YL, Deletic A, Alcazar L, Bratieres K, Fletcher TD, McCarthy DT (2012) Removal of Clostridium perfringens, Escherichia coli and F-RNA coliphages by stormwater biofilters. Ecol Eng 49:137–145

    Article  Google Scholar 

  367. Vezzaro L, Eriksson E, Ledin A, Mikkelsen PS (2012) Quantification of uncertainty in modelled partitioning and removal of heavy metals (Cu, Zn) in a stormwater retention pond and a biofilter. Water Res 46:6891–6903

    Article  CAS  PubMed  Google Scholar 

  368. Mohn W, Radziminski C, Fortin M-C, Reimer K (2001) On site bioremediation of hydrocarbon- contaminated arctic tundra soils in inoculated biopiles. Appl Microbiol 57:242–247

    CAS  Google Scholar 

  369. Chemlal R, Tassist A, Drouiche M, Lounici H, Drouiche N, Mameri N (2012) Microbiological aspects study of bioremediation of diesel-contaminated soils by biopile technique. Int Biodeterior Biodegrad 75:201–206

    Article  CAS  Google Scholar 

  370. Kim SK, Park CB, Koo Y-M, Yun HS (2003) Biosorption of cadmium and copper ions by Tri-choderma reesei RUT C30. J Ind Eng Chem 9:403–406

    CAS  Google Scholar 

  371. Sari A, Tuzen M (2009) Kinetic and equilibrium studies of biosorption of Pb(II) and Cd(II) from aqueous solution by macrofungus (Amanita rubescens) biomass. J Hazard Mater 164:1004–1011

    Article  CAS  PubMed  Google Scholar 

  372. Chao H-P, Chang C-C, Nieva A (2014) Biosorption of heavy metals on Citrus maxima peel, passion fruit shell, and sugarcane bagasse in a fixed-bed column. J Ind Eng Chem 20:3408–3414

    Article  CAS  Google Scholar 

  373. Chen YLC, Hong XQ, He H, Luo HW, Qian TT, Li RZ et al (2014) Biosorption of Cr (VI) by Typha angustifolia: mechanism and responses to heavy metal stress. Bioresour Technol 160:89–92

    Article  CAS  PubMed  Google Scholar 

  374. Wang J, Chen C (2014) Chitosan-based biosorbents: modification and application for biosorption of heavy metals and radionuclides. Bioresour Technol 160:129–141

    Article  CAS  PubMed  Google Scholar 

  375. Jaffar AHA, Tamilselvi M, Soban Akram A, Kaleem Arshan ML, Sivakumar V (2015) Comparative study on bioremediation of heavy metals by solitary ascidian, Phallusia nigra, between Thoothukudi and Vizhinjam ports of India. Ecotoxicol Environ Saf 121:93–99

    Article  CAS  Google Scholar 

  376. Anastopoulos I, Kyzas GZ (2015) Progress in batch biosorption of heavy metals onto algae. J Mol Liq 209:77–86

    Article  CAS  Google Scholar 

  377. Frutos FJG, Escolano O, García S, Babín M, Fernández MD (2010) Bioventing remediation and ecotoxicity evaluation of phenanthrene-contaminated soil. J Hazard Mater 183:806–813

    Article  CAS  Google Scholar 

  378. Carvalho M, Vila MC, Soeiro de Carvalho JM, Domingues V, Oliva-Teles T, Fiúza A (2010) Bioventing tests in contaminated residual granitic soils. J Biotechnol 150 Suppl:S282

    Google Scholar 

  379. Sui H, Li S (2011) Modeling for volatilization and bioremediation of toluene-contaminated soil by bioventing. Chin J Chem Eng 19:340–348

    Article  CAS  Google Scholar 

  380. Ryan CD, Jim L, Mehdi B (2012) Sustainable wind-driven bioventing at a petroleum hydrocarbon–impacted site. Remediation 22:65–78

    Article  Google Scholar 

  381. Abid N, Chamkha M, Godon JJ, Sayadi S (2007) Involvement of microbial populations during the composting of olive mill wastewater sludge. Environ Technol 28:751–760

    Article  CAS  PubMed  Google Scholar 

  382. Ghaly A, Zhang B, Dave D (2011) Biodegradation of phenolic compounds in creosote treated wood waste by a composting microbial culture augmented with the fungus Thermoascus aurantiacus. Am J Biochem Biotechnol 7:90–103

    Article  CAS  Google Scholar 

  383. Kharrazi SM, Younesi H, Abedini-Torghabeh J (2014) Microbial biodegradation of waste materials for nutrients enrichment and heavy metals removal: an integrated composting vermicomposting process. Int Biodeterior Biodegrad 92:41–48

    Article  CAS  Google Scholar 

  384. Soobhany N, Mohee R, Garg VK (2015) Comparative assessment of heavy metals content during the composting and vermicomposting of municipal solid waste employing Eudrilus eugeniae. Waste Manage 39:130–145

    Article  CAS  Google Scholar 

  385. Al-awadhi N, Al-Daher R, Elnawawy A, Balba MT (1996) Bioremediation of oil-contaminated soil in Kuwait. I. Landfarming to remediate oil-contaminated soil. J Soil Contam 5:243–260

    Article  CAS  Google Scholar 

  386. Mancini O, Cuccu W, Molinari M (2005) Landfarming and phytoremediation in an urban area: a case study. In situ and on-site bioremediation. In: Proceedings of the 8th international in situ and on-site bioremediation symposium; Baltimore, 2005 June 6–9

    Google Scholar 

  387. Saadoun IMK, Al-Ghzawi ZD (2005) Bioremediation of petroleum contamination. Biorem Aquat Terr Ecosyst 173–212

    Google Scholar 

  388. Jacques RJS, Okeke BC, Bento FM, Peralba MCR, Camargo FAO (2007) Characterization of a polycyclic aromatic hydrocarbon-degrading microbial consortium from a petro-chemical sludge landfarming site. Biorem J 11:1–11

    Article  CAS  Google Scholar 

  389. Paudyn K, Rutter A, Kerry Rowe R, Poland JS (2008) Remediation of hydrocarbon contaminated soils in the Canadian Arctic by landfarming. Cold Reg Sci Technol 53:102–114

    Article  Google Scholar 

  390. Sanscartier D, Laing T, Reimer K, Zeeb B (2009) Bioremediation of weathered petroleum hydrocarbon soil contamination in the Canadian High Arctic: laboratory and field studies. Chemosphere 77:1121–1126

    Article  CAS  PubMed  Google Scholar 

  391. Mikkonen A, Hakala KP, Lappi K, Kondo E, Vaalama A, Suominen L (2012) Changes in hydrocarbon groups, soil ecotoxicity and microbiology along horizontal and vertical contamination gradients in an old landfarming field for oil refinery waste. Environ Pollut 162:374–380

    Article  CAS  PubMed  Google Scholar 

  392. Yee DC, Maynard JA, Wood TK (1998) Rhizoremediation of trichloroethylene by a recombinant, root-colonizing Pseudomonas fluorescens strain expressing toluene ortho-monooxygenase constitutively. Appl Environ Microbiol 64:112–118

    CAS  PubMed  PubMed Central  Google Scholar 

  393. Villacieros M, Whelan C, Mackova M, Molgaard J, Sánches-Contreras M, Lloret J et al (2005) Polychlorinated biphenyl rhizoremediation by Pseudomonas fluorescens F113 derivatives, using a Sinorhizobium meliloti nod system to drive bph gene expression. Appl Environ Microbiol 71:2687–2694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  394. Johnson DL, Anderson DR, McGrath S (2005) Soil microbial response during the phytoremediation of a PAH contaminated soil. Soil Biol Biochem 37:2334–2336

    Article  CAS  Google Scholar 

  395. Maila M, Randima P, Cloete TE (2005) Multispecies and monoculture rhizoremediation of polycyclic aromatic hydrocarbons (PAHs) from the soil. Int J Phytoremediation 7:87–98

    Article  CAS  PubMed  Google Scholar 

  396. Tovanabootr A, Semprini L, Dolan ME, Azizian M, Magar VS, Debacker D et al (2002) Cometabolic air sparging field demonstration with propane to remediate trichloroethene and cis-dichloroethene. In: 6th international in situ and on site bioremediation symposium: 2001 Jun 4-7. Battelle Press, San Diego, pp 145–153

    Google Scholar 

  397. Urum K, Pekdemir T, Ross D, Grigson S (2005) Crude oil contaminated soil washing in air sparging assisted stirred tank reactor using biosurfactants. Chemosphere 60:334–343

    Article  CAS  PubMed  Google Scholar 

  398. Kabelitz N, Machackova J, Imfeld G, Brennerova M, Pieper DH, Heipieper HJ et al (2009) Enhancement of the microbial community biomass and diversity during air sparging bioremediation of a soil highly contaminated with kerosene and BTEX. Appl Microbiol Biotechnol 82:565–577

    Article  CAS  PubMed  Google Scholar 

  399. Gao S, Meegoda JN, Hu L (2013) A dynamic two-phase flow model for air sparging. Int J Numer Anal Meth Geomech 37:1801–1821

    Article  CAS  Google Scholar 

  400. Kuyukina MS, Ivshina IB, Ritchkova MI, Philp JC (2003) Bioremediation of crude oil-contaminated soil using slurry-phase biological treatment and land farming techniques. Soil Sediment Contam 12:85–99

    Article  CAS  Google Scholar 

  401. Mohan SV, Prasanna D, Purushotham Reddy B, Sarma PN (2008) Ex situ bioremediation of pyrene contaminated soil in bio-slurry phase reactor operated in periodic discontinuous batch mode: influence of bioaugmentation. Int Biodeterior Biodegrad 62:162–169

    Article  CAS  Google Scholar 

  402. Nasseri S, Kalantary RR, Nourieh N, Naddafi K, Mahvi AH, Baradaran N (2010) Influence of bioaugmentation in biodegradation of PAHs-contaminated soil in bio-slurry phase reactor. J Environ Health Sci Eng 7:199–208

    CAS  Google Scholar 

  403. Tomei MC, Mosca Angelucci D, Annesini MC, Daugulis AJ (2013) Ex situ remediation of polluted soils by absorptive polymers, and a comparison of slurry and two-phase partitioning bioreactors for ultimate contaminant degradation. J Hazard Mater 262:31–37

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Pinto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pinto, A.P., de Varennes, A., Lopes, M.E., Teixeira, D.M. (2016). Biological Approaches for Remediation of Metal-Contaminated Sites. In: Ansari, A., Gill, S., Gill, R., Lanza, G., Newman, L. (eds) Phytoremediation. Springer, Cham. https://doi.org/10.1007/978-3-319-40148-5_3

Download citation

Publish with us

Policies and ethics