Skip to main content

Phytoremediation: Uptake and Role of Metal Transporters in Some Members of Brassicaceae

  • Chapter
  • First Online:
Phytoremediation

Abstract

Plants absorb water and minerals for their growth and survival from the matrix they grow upon. For every resource absorbed, there is a specific pathway for its translocation. While water finds its way through semipermeable plasma membrane and also through aquaporins to some extent, minerals get their entry along with it due to their soluble nature. With these, heavy metals also enter the plants through specific metal transporters. These metal transporters have remained conserved to some extent throughout evolution. Phytoremediation reports claim that most of the efficient phytoremediators belong to the family Brassicaceae. Heavy metal transporters namely Zinc-regulated transporter (ZRT), Iron regulated transporter (IRT), ZRT-, IRT-like proteins (ZIP), Natural resistance-associated macrophage proteins (NRAMP), Cation diffusion facilitator (CDF)/Metal tolerance protein (MTP), Heavy metal ATPase (HMA), Endomembrane-type CA-ATPase (ECA), Detoxification (DTX), Magnesium/Proton Exchanger (MHX), and Copper transporter (COPT) have been identified in Arabidopsis thaliana. Many researches showed that some of these genes are upregulated in Arabidopsis halleri, a hyperaccumulator. The difference in regulation of these genes is responsible for the potential in A. halleri. The aim of present study is to identify heavy metal transporters in Brassica rapa and Brassica oleracea, so that they can be engineered upon by molecular techniques in future, making them highly efficient for the treatment of contaminated sites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Burken JG, Schnoor JL (1997) Uptake and metabolism of atrazine by poplar trees. Environ Sci Technol 31(5):1399–1406

    Article  CAS  Google Scholar 

  2. Salt DE, Smith RD, Raskin I (1998) Phytoremediation. Annu Rev Plant Physiol Plant Mol Biol 49:643–668

    Article  CAS  PubMed  Google Scholar 

  3. Vassil AD, Kapulmik Y, Raskin I, Salt DE (1998) The role of EDTA in lead transport and accumulation by Indian mustard. Plant Physiol 117:447–453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Baker AJM, McGrath SP, Reeves RD, Smith JAC (2000) Metal hyperaccumulator plants: a review of the ecology and physiology of a biological resource for phytoremediation of metal-polluted soils. In: Terry N, Banuelos G (eds) Phytoremediation of contaminated soil and water. Lewis, Boca Raton, pp 85–108

    Google Scholar 

  5. Ma LQ, Komar KM, Tu C (2001) A fern that accumulates arsenic. Nature 409:579

    Article  CAS  PubMed  Google Scholar 

  6. Brooks RR (1998) Plants that hyperaccumulate heavy metals. CAB International, Wallingford

    Google Scholar 

  7. Reeves RD, Baker AJM (2000) Phytoremediation of toxic metals. Wiley, New York, pp 193–229

    Google Scholar 

  8. Schmoger ME, Oven M, Grill E (2000) Detoxification of arsenic by phytochelatins in plants. Plant Physiol 122:793–801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lytle CM, Lytle FW, Yang N, Qian H, Hansen D, Zayed A, Terry N (1998) Reduction of Cr(VI) to Cr(III) by wetland plants: potential for in situ heavy metal detoxification. Environ Sci Technol 32:3087–3093

    Article  CAS  Google Scholar 

  10. Horne AJ (2000) Phytoremediation by constructed wetlands. In: Terry N, Bañuelos G (eds) Phytoremediation of contaminated soil and water. Lewis, Boca Raton, pp 13–40

    Google Scholar 

  11. Raskin I, Smith RD, Salt DE (1997) Phytoremediation of metals: using plants to remove pollutants from the environment. Curr Opin Biotechnol 8:221–126

    Article  CAS  PubMed  Google Scholar 

  12. Berti WR, Cunningham SD (2000) Phytostabilization of metals. In: Raskins I, Ensley BD (eds) Phytoremediation of toxic metals using plants to clean up the environment. Wiley, New York, pp 71–88

    Google Scholar 

  13. Burken JG, Shanks JV, Thompson PL (2000) Phytoremediation and plant metabolism of explosives and nitroaromatic compounds. In: Spain JC et al (eds) Biodegradation of nitroaromatic compounds and explosives. Lewis, Washington, DC, pp 239–275

    Google Scholar 

  14. Kramer U, Chardonnens AN (2001) The use of transgenic plants in the bioremediation of soils contaminated with trace elements. Appl Microbiol Biotechnol 55:661–672

    Article  CAS  PubMed  Google Scholar 

  15. Hansen D, Duda PJ, Zayed A, Terry N (1998) Selenium removal by constructed wetlands: role of biological volatilization. Environ Sci Technol 32:591–597

    Article  CAS  Google Scholar 

  16. Rugh CL, Wilde HD, Stack NM, Thompson DM, Summers AO, Meagher RB (1996) Mercuric ion reduction and resistance in transgenic Arabidopsis thaliana plants expressing a modified bacterial merA gene. Proc Natl Acad Sci U S A 93:3182–3187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Van Huysen T, Abdel Ghany S, Hale KL, LeDuc D, Terry N, Pilon Smits EAH (2003) Overexpression of cystathionine synthase enhances selenium volatilization in Brassica juncea. Planta 218:71–78

    Article  PubMed  Google Scholar 

  18. Le Duc DL, Tarun AS, Montes-Bayon M, Meija J, Malit MF (2004) Overexpression of selenocysteine methyltransferase in Arabidopsis and Indian mustard increases selenium tolerance and accumulation. Plant Physiol 135:377–383

    Article  Google Scholar 

  19. Environmental Protection Agency (EPA) (2001) Office of sold-waste and emergency response. Brownfields technology primer: selecting and using phytoremediation for site cleanup. EPA 542-R-01-006. Environ Sci Technol 31:182–186

    Google Scholar 

  20. Raskin I (1995) Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Biotechnology 13:468–474

    Article  PubMed  Google Scholar 

  21. Watanabe ME (1997) Phytoremediation on the brink of commercialisation. Environ Sci Technol 31:182–186

    Article  Google Scholar 

  22. Varun M, D’souza R, Pratas J, Paul MS (2012) Metal contamination of soils and plants associated with the glass industry in North Central India: prospects of phytoremediation. Environ Sci Pollut Res 19:269–281

    Article  CAS  Google Scholar 

  23. D’souza R, Varun M, Pratas J, Paul MS (2013) Spatial distribution of heavy metals in soil and flora associated with the glass industry in North central India: implications for Phytoremediation. Soil Sediment Contam 22:1–20

    Article  Google Scholar 

  24. Gaitán-Solis E, Taylor NJ, Siritunga D, Stevens W, Schachtman DP (2015) Overexpression of the transporters AtZIP1and AtMTP1 in cassava changes zinc accumulation and partitioning. Front Plant Sci 6:492

    Article  PubMed  PubMed Central  Google Scholar 

  25. Chiang HC, Lo JC, Yeh KC (2006) Genes associated with heavy metal tolerance and accumulation in Zn/Cd hyperaccumulator arabidopsis halleri: a genomic survey with cDNA microarray. Environ Sci Technol 40(21):6792–6798

    Article  CAS  PubMed  Google Scholar 

  26. Talke IN, Hanikenne M, Kramer U (2006) Zinc-dependent global transcriptional control, transcriptional deregulation, and higher gene copy number for genes in metal homeostasis of the hyperaccumulator Arabidopsis halleri. Plant Physiol 142:148–167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Assunção AG, Herrero E, Lin YF, Huettel B, Talukdar S, Smaczniak C, Immink RG, van Eldik M, Fiers M, Schat H, Aarts MG (2010) Arabidopsis thaliana transcription factors bZIP19 and bZIP23 regulate the adaptation to zinc deficiency. Proc Natl Acad Sci USA 107:10296–10301

    Article  PubMed  PubMed Central  Google Scholar 

  28. Milner MJ, Seamon J, Craft E, Kochian LV (2013) Transport properties of members of the ZIP family in plants and their role in Zn and Mn homeostasis. J Exp Bot 64:369–381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ricachenevsky FK, Menguer PK, Sperotto RA, Williams LE, Fett JP (2013) Roles of plant metal tolerance proteins (MTP) in metal storage and potential use in biofortification strategies. Front Plant Sci 4:144

    PubMed  PubMed Central  Google Scholar 

  30. Hermand V, Julio E, deBorne FD, Punshon T, Ricacheneysky FK, Arnaud B, Gosti F, Berthomieu P (2014) Inactivation of two newly identified tobacco heavy metal ATPases leads to reduced Zn and Cd accumulation in shoots and reduced pollen germination. Metallomics 6:1427–1440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kramer U, Hanikenne M, Kroymann J, Talke I, Haydon M, Lanz C, Motte P, Weigel D (2009) Arabidopsis halleri as a model organism to study the extreme complex trait of metal hyperaccumulation. In: 20th international conference on Arabidopsis research

    Google Scholar 

  32. Becher M, Talke IN, Krall L, Kramer U (2004) Cross-species microarray transcript profiling reveals high constitutive expression of metal homeostasis genes in shoots of the zinc hyperaccumulator Arabidopsis halleri. Plant J 37:251–268

    Article  CAS  PubMed  Google Scholar 

  33. Ueno D, Milner MJ, Yamaji N, Yokosho K, Koyama E, Clemencia Zambrano M, Kaskie M, Ebbs S, Kochian LV, Ma JF (2011) Elevated expression of TcHMA3 plays a key role in the extreme Cd tolerance in a Cd- hyperaccumulating ecotype of Thlaspi caerulescens. Plant J 66:852–862

    Article  CAS  PubMed  Google Scholar 

  34. Verbruggen N, Hermans C, Schat H (2009) Molecular mechanisms of metal hyperaccumulation in plants. New Phytol 181:759–776

    Article  CAS  PubMed  Google Scholar 

  35. Brown SL, Chaney RL, Angle JS, Baker AJM (1995) Zinc and cadmium uptake by hyperaccumulator Thlaspi caerulescens grown in nutrient solution. Soil Sci Soc Am J59:125–133

    Article  Google Scholar 

  36. Shen ZG, Zhao FJ, McGrath SP (1997) Uptake and transport of zinc in the hyperaccumulator Thlaspi caerulescens and the non-hyperaccumulator Thlaspi ochroleucum. Plant Cell Environ 20:898–906

    Article  CAS  Google Scholar 

  37. Kupper H, Lombi E, Zhao FJ, Mcgrath SP (2000) Cellular compartmentation of cadmium and zinc in relation to other elements in the hyperaccumulator Arabidopsis halleri. Planta 212:75–84

    Article  CAS  PubMed  Google Scholar 

  38. Zhao F, Lombi E, Breedon T, Mcgrath S (2000) Zinc hyperaccumulation and cellular distribution in Arabidopsis halleri. Plant Cell Environ 23:507–514

    Article  CAS  Google Scholar 

  39. Bert V, Bonnin I, Saumitou-Laprade P, DeLaguerie P, Petit D (2002) Do Arabidopsis halleri from non metallicolous populations accumulate zinc and cadmium more effectively than those from metallicolous populations? New Phytol 155:47–57

    Article  CAS  Google Scholar 

  40. Cosio C, Martinoia E, Keller C (2004) Hyperaccumulation of cadmium and zinc in Thlaspi caerulescens and Arabidopsis halleri at the leaf cellular level. Plant Physiol 134:716–725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Shanmugam V, Lo JC, Yeh KC (2013) Control of Zn uptake in Arabidopsis halleri: a balance between Zn and Fe. Front Plant Sci 4:281

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Financial support from Council of Scientific & Industrial Research (S. no. 08/109(0011)/2013-EMR-I), and University Grants Commission [No. F/PDFSS201415SCUTT8854] is duly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ritu Chaturvedi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Chaturvedi, R., Varun, M., Paul, M.S. (2016). Phytoremediation: Uptake and Role of Metal Transporters in Some Members of Brassicaceae. In: Ansari, A., Gill, S., Gill, R., Lanza, G., Newman, L. (eds) Phytoremediation. Springer, Cham. https://doi.org/10.1007/978-3-319-40148-5_16

Download citation

Publish with us

Policies and ethics